Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RuntimeError: Input type (torch.FloatTensor) ... #1222

Closed
alexander-sony opened this issue Sep 18, 2024 · 2 comments
Closed

RuntimeError: Input type (torch.FloatTensor) ... #1222

alexander-sony opened this issue Sep 18, 2024 · 2 comments
Assignees

Comments

@alexander-sony
Copy link
Contributor

Issue Type

Bug

Source

pip (model-compression-toolkit)

MCT Version

2.2.0

OS Platform and Distribution

google colab

Python version

3.10.12

Describe the issue

imx500_notebooks/pytorch/pytorch_yolov8n_seg_for_imx500.ipynb

from tutorials.mct_model_garden.evaluation_metrics.coco_evaluation import evaluate_yolov8_segmentation
evaluate_yolov8_segmentation(quant_model, seg_model_predict, data_dir='coco', data_type='val2017', img_ids_limit=100, output_file='results_quant.json', iou_thresh=0.7, conf=0.001, max_dets=300,mask_thresh=0.55)

loading annotations into memory...
Done (t=0.44s)
creating index...
index created!
Processing Images:   0%|          | 0/100 [00:00<?, ?it/s]
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
[<ipython-input-13-837fbbfbddac>](https://localhost:8080/#) in <cell line: 2>()
      1 from tutorials.mct_model_garden.evaluation_metrics.coco_evaluation import evaluate_yolov8_segmentation
----> 2 evaluate_yolov8_segmentation(quant_model, seg_model_predict, data_dir='coco', data_type='val2017', img_ids_limit=100, output_file='results_quant.json', iou_thresh=0.7, conf=0.001, max_dets=300,mask_thresh=0.55)

12 frames
[/content/tutorials/mct_model_garden/evaluation_metrics/coco_evaluation.py](https://localhost:8080/#) in evaluate_yolov8_segmentation(model, model_predict_func, data_dir, data_type, img_ids_limit, output_file, iou_thresh, conf, max_dets, mask_thresh)
    539 
    540         # Run the model
--> 541         output = model_predict_func(model, input_img)
    542 
    543         #run post processing (nms)

[/content/tutorials/mct_model_garden/models_pytorch/yolov8/yolov8.py](https://localhost:8080/#) in seg_model_predict(model, inputs)
    540     # Run the model
    541     with torch.no_grad():
--> 542         outputs = model(input_tensor)
    543 
    544     return outputs

[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _wrapped_call_impl(self, *args, **kwargs)
   1551             return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1552         else:
-> 1553             return self._call_impl(*args, **kwargs)
   1554 
   1555     def _call_impl(self, *args, **kwargs):

[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *args, **kwargs)
   1560                 or _global_backward_pre_hooks or _global_backward_hooks
   1561                 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1562             return forward_call(*args, **kwargs)
   1563 
   1564         try:

[/usr/local/lib/python3.10/dist-packages/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py](https://localhost:8080/#) in forward(self, *args)
    315 
    316             # Run node operation and fetch outputs
--> 317             out_tensors_of_n, out_tensors_of_n_float = _run_operation(node,
    318                                                                       input_tensors,
    319                                                                       op_func=op_func,

[/usr/local/lib/python3.10/dist-packages/model_compression_toolkit/core/pytorch/back2framework/pytorch_model_builder.py](https://localhost:8080/#) in _run_operation(n, input_tensors, op_func, quantize_node_activation_fn, use_activation_quantization)
    144         merged_inputs, functional_kwargs = _merge_inputs(n, input_tensors, op_call_args, functional_kwargs.copy(),
    145                                                          tensor_input_allocs=_tensor_input_allocs)
--> 146         out_tensors_of_n_float = op_func(*merged_inputs, **functional_kwargs)
    147 
    148     # Add a fake quant node if the node has an activation threshold.

[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _wrapped_call_impl(self, *args, **kwargs)
   1551             return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1552         else:
-> 1553             return self._call_impl(*args, **kwargs)
   1554 
   1555     def _call_impl(self, *args, **kwargs):

[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *args, **kwargs)
   1560                 or _global_backward_pre_hooks or _global_backward_hooks
   1561                 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1562             return forward_call(*args, **kwargs)
   1563 
   1564         try:

[/usr/local/lib/python3.10/dist-packages/mct_quantizers/pytorch/quantize_wrapper.py](https://localhost:8080/#) in forward(self, *args, **kwargs)
    254                 outputs = self.layer(args, *self.op_call_args, **_kwargs)
    255             else:
--> 256                 outputs = self.layer(*args, *self.op_call_args, **_kwargs)
    257 
    258             return outputs

[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _wrapped_call_impl(self, *args, **kwargs)
   1551             return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1552         else:
-> 1553             return self._call_impl(*args, **kwargs)
   1554 
   1555     def _call_impl(self, *args, **kwargs):

[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py](https://localhost:8080/#) in _call_impl(self, *args, **kwargs)
   1560                 or _global_backward_pre_hooks or _global_backward_hooks
   1561                 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1562             return forward_call(*args, **kwargs)
   1563 
   1564         try:

[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/conv.py](https://localhost:8080/#) in forward(self, input)
    456 
    457     def forward(self, input: Tensor) -> Tensor:
--> 458         return self._conv_forward(input, self.weight, self.bias)
    459 
    460 class Conv3d(_ConvNd):

[/usr/local/lib/python3.10/dist-packages/torch/nn/modules/conv.py](https://localhost:8080/#) in _conv_forward(self, input, weight, bias)
    452                             weight, bias, self.stride,
    453                             _pair(0), self.dilation, self.groups)
--> 454         return F.conv2d(input, weight, bias, self.stride,
    455                         self.padding, self.dilation, self.groups)
    456 

RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same or input should be a MKLDNN tensor and weight is a dense tensor

Expected behaviour

No response

Code to reproduce the issue

see above

Log output

No response

@samuel-wj-chapman
Copy link
Contributor

Thanks Alex, should be resolved with #1228.

samuel-wj-chapman added a commit that referenced this issue Sep 24, 2024
resolve issue #1222 
fix gpu execusion on tutorial
@samuel-wj-chapman
Copy link
Contributor

pr merged

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants