-
Notifications
You must be signed in to change notification settings - Fork 1
/
ch_Navp.mod
147 lines (120 loc) · 2.71 KB
/
ch_Navp.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
TITLE sodium channel (voltage dependent)
COMMENT
sodium channel (voltage dependent)
Ions: na
Style: quasi-ohmic
From: modified from Jeff Magee. M.Migliore may97
Updates:
2002 April (Michele Migliore): added sh to account for higher threshold
2014 December (Marianne Bezaire): documented
ENDCOMMENT
NEURON {
SUFFIX ch_Navp
USEION na READ ena WRITE ina
RANGE gmax, ar2, myi, e, g
GLOBAL minf, hinf, mtau, htau, sinf, taus,qinf, thinf
}
PARAMETER {
sh = 15 (mV)
gmax = 0.010 (mho/cm2)
tha = -30 (mV)
qa = 7.2 (mV) : act slope
Ra = 0.4 (/ms) : open (v)
Rb = 0.124 (/ms) : close (v)
thi1 = -45 (mV) : v 1/2 for inact
thi2 = -45 (mV) : v 1/2 for inact
qd = 1.5 (mV) : inact tau slope
qg = 1.5 (mV)
mmin = 0.02
hmin = 0.5
q10 = 2
Rg = 0.01 (/ms) : inact recov (v)
Rd = 0.03 (/ms) : inact (v)
qq = 10 (mV)
tq = -55 (mV)
thinf = -50 (mV) : inact inf slope
qinf = 4 (mV) : inact inf slope
vhalfs = -60 (mV) : slow inact.
a0s = 0.0003 (ms) : a0s=b0s
zetas = 12 (1)
gms = 0.2 (1)
smax = 10 (ms)
vvh = -58 (mV)
vvs = 2 (mV)
ar2 = 1 (1) : 1=no inact., 0=max inact.
ena (mV) : must be explicitly def. in hoc
celsius
v (mV)
e
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(um) = (micron)
}
ASSIGNED {
ina (mA/cm2)
myi (mA/cm2)
g (mho/cm2)
minf
hinf
sinf
mtau (ms)
htau (ms)
taus (ms)
}
STATE { m h s}
BREAKPOINT {
SOLVE states METHOD cnexp
g = gmax*m*m*m*h*s
ina = g * (v - ena)
myi = ina
}
INITIAL {
trates(v,ar2)
m=minf
h=hinf
s=sinf
}
FUNCTION alpv(v(mV)) {
alpv = 1/(1+exp((v-vvh-sh)/vvs))
}
FUNCTION alps(v(mV)) {
alps = exp(1.e-3*zetas*(v-vhalfs-sh)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION bets(v(mV)) {
bets = exp(1.e-3*zetas*gms*(v-vhalfs-sh)*9.648e4/(8.315*(273.16+celsius)))
}
LOCAL mexp, hexp, sexp
DERIVATIVE states {
trates(v,ar2)
m' = (minf-m)/mtau
h' = (hinf-h)/htau
s' = (sinf - s)/taus
}
PROCEDURE trates(vm,a2) {
LOCAL a, b, c, qt
qt=q10^((celsius-24)/10)
a = trap0(vm,tha+sh,Ra,qa)
b = trap0(-vm,-tha-sh,Rb,qa)
mtau = 1/(a+b)/qt
if (mtau<mmin) {mtau=mmin}
minf = a/(a+b)
a = trap0(vm,thi1+sh,Rd,qd)
b = trap0(-vm,-thi2-sh,Rg,qg)
htau = 1/(a+b)/qt
if (htau<hmin) {htau=hmin}
hinf = 1/(1+exp((vm-thinf-sh)/qinf))
c=alpv(vm)
sinf = c+a2*(1-c)
taus = bets(vm)/(a0s*(1+alps(vm)))
if (taus<smax) {taus=smax}
}
FUNCTION trap0(v,th,a,q) {
if (fabs(v-th) > 1e-6) {
trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
} else {
trap0 = a * q
}
}