Skip to content

Latest commit

 

History

History
69 lines (47 loc) · 3.29 KB

README.md

File metadata and controls

69 lines (47 loc) · 3.29 KB

Introduction

This is the code for the article Machine translating the Bible into new languages.

The preprocessing step requires a slightly modified version of the Moses tokenizer. This and another dependency are thus included as Git submodules. For this reason, you need to also clone the subrepositories. The easiest way to do this is to use this command to clone the repository:

git clone --recurse-submodules https://github.com/sliedes/fairseq-py

Install PyTorch >= 0.3.0 either from source or from http://pytorch.org/.

Build the C extensions for Fairseq and install:

$ pip install -r requirements.txt
$ CFLAGS=-I/opt/cuda/include python setup.py build
$ python setup.py develop

To prepare the data set:

  1. Install the SWORD project's tools on your computer. For example, for Debian derivative distributions they are available in a package named libsword-utils.
  2. Install the Bible modules you want to include in the corpus. You can do this using the installmgr command line tool, or from a Bible software package such as BibleTime.
  3. Edit data/prepare_bible.py to list the modules in the MODULES variable. Those prefixed with an asterisk will be romanized. Also set the attention language (variable SRC), and edit TRAIN_STARTS to exclude portions of some translations from training and use them as the validation/test set.

Now run the following commands:

$ cd data
$ ./prepare_bible.py
$ cd ..
$ python preprocess.py --source-lang src --target-lang tgt \
  --trainpref data/bible.prep/train --validpref data/bible.prep/valid \
  --testpref data/bible.prep/test --destdir data-bin/bible.prep

Now you will have a binarized dataset in data-bin/bible.prep. You can use train.py to train a model:

$ mkdir -p checkpoints/bible.prep
$ CUDA_VISIBLE_DEVICES=0 python train.py data-bin/bible.prep \
  --lr 0.25 --clip-norm 0.1 --dropout 0.2 --max-tokens 3000 \
  --arch fconv_wmt_en_ro --save-dir checkpoints/bible.prep

Adjust the --max-tokens value if you run out of GPU memory.

You can generate translations of the test/validation set with with generate.py:

$ python generate.py data-bin/bible.prep --path checkpoints/bible.prep/checkpoint_best.pt \
  --batch-size 10 --beam 120 --remove-bpe

To generate full translations, use the generated template in data/bible.prep/src-template. For each line, replace the TGT_TEMPLATE tag by one that corresponds to a translation; for example, TGT_ESV2011 for English or TGT_FinPR for Finnish:

$ sed -e s/TGT_TEMPLATE/TGT_FinPR/ <data/bible.prep/src-template >src.FinPR

Now you can edit src.FinPR to omit the verses you do not want translated. After that, to translate:

$ ./batch_translate.py --model checkpoints/bible.prep/checkpoint_best.pt \
  --dictdir data-bin/bible.prep --beam 120 --batch-size 10 src.FinPR >FinPR.raw.txt

The output file has the translated sentences in length order. To sort them in the order of the source text, add verse names and apply some minor postprocessing, use sort_full.py (you may need to edit it to change the source module):

$ ./sort_full.py <FinPR.raw.txt >FinPR.txt

For more useful information in the original README for fairseq-py, consult README.fairseq.md.