-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinduction_equation_2d.py
272 lines (208 loc) · 9.76 KB
/
induction_equation_2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import pylab as pl
from GenericFVUtils import *
def maxAbsEig(hcl):
return max( np.max(abs(hcl.params.u1))/hcl.dx, np.max(abs(hcl.params.u2))/hcl.dy )
def numFluxX(self, U, dt, dx):
od = U[0].order
Dx0_B1 = (U[0].u[od:-od,2: ] - U[0].u[od:-od, :-2])/2.
Dx0_B2 = (U[1].u[od:-od,2: ] - U[1].u[od:-od, :-2])/2.
Dx0_u1 = (self.params.u1[od:-od,2: ] - self.params.u1[od:-od, :-2])/2.
Dx0_u2 = (self.params.u2[od:-od,2: ] - self.params.u2[od:-od, :-2])/2.
Dxx_B1 = (U[0].u[od:-od,2: ] - 2.*U[0].u[od:-od,od:-od] + U[0].u[od:-od, :-2])/2.
Dxx_B2 = (U[1].u[od:-od,2: ] - 2.*U[1].u[od:-od,od:-od] + U[1].u[od:-od, :-2])/2.
maxAbs_u1 = np.maximum(np.abs(self.params.u1[od:-od,od:-od]), dx/2.)
F0 = - self.params.u1[od:-od,od:-od] * Dx0_B1 \
+ maxAbs_u1 * Dxx_B1
F1 = - self.params.u1[od:-od,od:-od] * Dx0_B2 \
+ Dx0_u2 * U[0].u[od:-od,od:-od] \
- Dx0_u1 * U[1].u[od:-od,od:-od] \
+ maxAbs_u1 * Dxx_B2
return [-F0, -F1]
def numFluxY(self, U, dt, dy):
od = U[0].order
Dy0_B1 = (U[0].u[2:, od:-od] - U[0].u[:-2, od:-od])/2.
Dy0_B2 = (U[1].u[2:, od:-od] - U[1].u[:-2, od:-od])/2.
Dy0_u1 = (self.params.u1[2:, od:-od] - self.params.u1[:-2, od:-od])/2.
Dy0_u2 = (self.params.u2[2:, od:-od] - self.params.u2[:-2, od:-od])/2.
Dyy_B1 = (U[0].u[2:, od:-od] - 2.*U[0].u[od:-od,od:-od] + U[0].u[:-2, od:-od])/2.
Dyy_B2 = (U[1].u[2:, od:-od] - 2.*U[1].u[od:-od,od:-od] + U[1].u[:-2, od:-od])/2.
maxAbs_u2 = np.maximum(np.abs(self.params.u2[od:-od,od:-od]), dy/2.)
F0 = - self.params.u2[od:-od,od:-od] * Dy0_B1 \
- Dy0_u2 * U[0].u[od:-od,od:-od] \
+ Dy0_u1 * U[1].u[od:-od,od:-od] \
+ maxAbs_u2 * Dyy_B1
F1 = - self.params.u2[od:-od,od:-od] * Dy0_B2 \
+ maxAbs_u2 * Dyy_B2
return [-F0, -F1]
def numFluxX_form2(self, U, dt, dx):
od = U[0].order
Dxp_B1 = U[0].u[od:-od,2: ] - U[0].u[od:-od,1:-1]
Dxm_B1 = U[0].u[od:-od,1:-1] - U[0].u[od:-od, :-2]
Dxp_B2 = U[1].u[od:-od,2: ] - U[1].u[od:-od,1:-1]
Dxm_B2 = U[1].u[od:-od,1:-1] - U[1].u[od:-od, :-2]
u1p = np.maximum(self.params.u1[od:-od,od:-od], 0)
u1m = np.minimum(self.params.u1[od:-od,od:-od], 0)
F0 = u1m * Dxp_B1 + u1p * Dxm_B1
F1 = u1m * Dxp_B2 + u1p * Dxm_B2
return [F0, F1]
def numFluxY_form2(self, U, dt, dy):
od = U[0].order
Dyp_B1 = U[0].u[2: ,od:-od] - U[0].u[1:-1,od:-od]
Dym_B1 = U[0].u[1:-1,od:-od] - U[0].u[ :-2,od:-od]
Dyp_B2 = U[1].u[2: ,od:-od] - U[1].u[1:-1,od:-od]
Dym_B2 = U[1].u[1:-1,od:-od] - U[1].u[ :-2,od:-od]
u2p = np.maximum(self.params.u2[od:-od,od:-od], 0)
u2m = np.minimum(self.params.u2[od:-od,od:-od], 0)
F0 = u2m * Dyp_B1 + u2p * Dym_B1
F1 = u2m * Dyp_B2 + u2p * Dym_B2
return [F0, F1]
def numSource_form2(self, U, dt, dx, dy):
od = U[0].order
Dx0_u1 = (self.params.u1[od:-od,2: ] - self.params.u1[od:-od, :-2])/(2.*dx)
Dx0_u2 = (self.params.u2[od:-od,2: ] - self.params.u2[od:-od, :-2])/(2.*dx)
Dy0_u1 = (self.params.u1[2: ,od:-od] - self.params.u1[ :-2,od:-od])/(2.*dy)
Dy0_u2 = (self.params.u2[2: ,od:-od] - self.params.u2[ :-2,od:-od])/(2.*dy)
S0 = - Dy0_u2 * U[0].u[od:-od,od:-od] + Dy0_u1 * U[1].u[od:-od,od:-od]
S1 = + Dx0_u2 * U[0].u[od:-od,od:-od] - Dx0_u1 * U[1].u[od:-od,od:-od]
return [S0, S1]
def initialCondFun_linear(xv, yv):
uinit = np.zeros_like(xv)
uinit[xv>yv] = 2.
return [uinit, uinit]
def initialCondParamsFun_linear(xv, yv, dim, order, boundaryCondFunN, boundaryCondFunS, boundaryCondFunW, boundaryCondFunE):
[ny, nx] = xv.shape
u1_ = 1. + np.zeros((ny+2, nx+2))
u1_ = apply_BC_W(u1_, boundaryCondFunW, dim, order)
u1_ = apply_BC_E(u1_, boundaryCondFunE, dim, order)
u1_ = apply_BC_N(u1_, boundaryCondFunN, order)
u1_ = apply_BC_S(u1_, boundaryCondFunS, order)
u2_ = 2. + np.zeros((ny+2, nx+2))
u2_ = apply_BC_W(u2_, boundaryCondFunW, dim, order)
u2_ = apply_BC_E(u2_, boundaryCondFunE, dim, order)
u2_ = apply_BC_N(u2_, boundaryCondFunN, order)
u2_ = apply_BC_S(u2_, boundaryCondFunS, order)
return [u1_, u2_]
def initialCondFun_potField(xv, yv):
uinit = np.zeros_like(xv)
return [1. + .25*(np.cos(2.*np.pi*xv) + 2.*np.sin(2.*np.pi*yv)), np.sin(2.*np.pi*xv) + 2.*np.cos(2.*np.pi*yv)]
def initialCondParamsFun_potField(xv, yv, dim, order, boundaryCondFunN, boundaryCondFunS, boundaryCondFunW, boundaryCondFunE):
[ny, nx] = xv.shape
xCc_gc = np.linspace(-.5+.5/nx-1./nx*order, .5-.5/nx+1./nx*order, nx+2*order) # cell centers with ghost cells
yCc_gc = np.linspace(-.5+.5/ny-1./ny*order, .5-.5/ny+1./ny*order, ny+2*order) # cell centers
xv_gc, yv_gc = np.meshgrid(xCc_gc, yCc_gc)
u1_ = 1. + np.sin(2.*np.pi*xv_gc)*np.cos(2.*np.pi*yv_gc)
u1_ = apply_BC_W(u1_, boundaryCondFunW, dim, order)
u1_ = apply_BC_E(u1_, boundaryCondFunE, dim, order)
u1_ = apply_BC_N(u1_, boundaryCondFunN, order)
u1_ = apply_BC_S(u1_, boundaryCondFunS, order)
u2_ = 1. - np.cos(2.*np.pi*xv_gc)*np.sin(2.*np.pi*yv_gc)
u2_ = apply_BC_W(u2_, boundaryCondFunW, dim, order)
u2_ = apply_BC_E(u2_, boundaryCondFunE, dim, order)
u2_ = apply_BC_N(u2_, boundaryCondFunN, order)
u2_ = apply_BC_S(u2_, boundaryCondFunS, order)
return [u1_, u2_]
def initialCondFun_rot(xv, yv):
uinit = np.zeros_like(xv)
ts_xv = 2.*(xv-.5)
ts_yv = 2.*(yv-.5)
factor = 4*np.exp(-20.*( (ts_xv - .5)**2 + ts_yv**2 ) )
return [-factor*ts_yv, factor*(ts_xv - .5)]
def initialCondParamsFun_rot(xv, yv, dim, order, boundaryCondFunN, boundaryCondFunS, boundaryCondFunW, boundaryCondFunE):
[ny, nx] = xv.shape
xCc_gc = np.linspace(-.5+.5/nx-1./nx*order, .5-.5/nx+1./nx*order, nx+2*order) # cell centers with ghost cells
yCc_gc = np.linspace(-.5+.5/ny-1./ny*order, .5-.5/ny+1./ny*order, ny+2*order) # cell centers
xv_gc, yv_gc = np.meshgrid(xCc_gc, yCc_gc)
return [-yv_gc, xv_gc]
def initialCondFun_OT(xv, yv):
u0_init = -np.sin(2.*np.pi*yv)
u1_init = +np.sin(4.*np.pi*xv)
return [u0_init, u1_init]
def initialCondParamsFun_OT(xv, yv, dim, order, boundaryCondFunN, boundaryCondFunS, boundaryCondFunW, boundaryCondFunE):
[ny, nx] = xv.shape
u1_ = np.zeros((ny+2, nx+2))
u1_[1:-1,1:-1] = -np.sin(2.*np.pi*yv)
u1_ = apply_BC_W(u1_, boundaryCondFunW, dim, order)
u1_ = apply_BC_E(u1_, boundaryCondFunE, dim, order)
u1_ = apply_BC_N(u1_, boundaryCondFunN, order)
u1_ = apply_BC_S(u1_, boundaryCondFunS, order)
u2_ = np.zeros((ny+2, nx+2))
u2_[1:-1,1:-1] = +np.sin(2.*np.pi*xv)
u2_ = apply_BC_W(u2_, boundaryCondFunW, dim, order)
u2_ = apply_BC_E(u2_, boundaryCondFunE, dim, order)
u2_ = apply_BC_N(u2_, boundaryCondFunN, order)
u2_ = apply_BC_S(u2_, boundaryCondFunS, order)
return [u1_, u2_]
def linear(nx=100, ny=100, Tmax=1.,example=1):
order = 1
limiter = None
dim = 2
# generate instance of class
hcl = HyperbolicConsLawNumSolver(dim, order, limiter, True, True)
hcl.setNumericalFluxFuns(numFluxX, numFluxY, maxAbsEig)
#hcl.setNumericalSourceFun(numSource)
# set boundary conditions
xCc = np.linspace(0.+.5/nx,1.-.5/nx,nx) # cell centers
yCc = np.linspace(0.+.5/ny,1.-.5/ny,ny) # cell centers
xv, yv = np.meshgrid(xCc, yCc)
if example == 1:
print("case: linear advection")
boundaryCondFunE = "Neumann"
boundaryCondFunW = "Neumann"
boundaryCondFunN = "Neumann"
boundaryCondFunS = "Neumann"
initialCondFun = initialCondFun_linear
initialCondParamsFun = initialCondParamsFun_linear
elif example == 2:
print("case: potential magentic field")
boundaryCondFunN = "periodic"
boundaryCondFunS = "periodic"
boundaryCondFunW = "periodic"
boundaryCondFunE = "periodic"
initialCondFun = initialCondFun_potField
initialCondParamsFun = initialCondParamsFun_potField
elif example == 3:
print("case: rotation around origin")
boundaryCondFunN = "periodic"
boundaryCondFunS = "periodic"
boundaryCondFunW = "periodic"
boundaryCondFunE = "periodic"
initialCondFun = initialCondFun_rot
initialCondParamsFun = initialCondParamsFun_rot
elif example == 4:
print("case: Orszag-Tang")
boundaryCondFunN = "periodic"
boundaryCondFunS = "periodic"
boundaryCondFunW = "periodic"
boundaryCondFunE = "periodic"
initialCondFun = initialCondFun_OT
initialCondParamsFun = initialCondParamsFun_OT
hcl.setUinit(initialCondFun(xv, yv), nx, ny, xCc, yCc)
[u1_, u2_] = initialCondParamsFun(xv, yv, dim, order, boundaryCondFunN, boundaryCondFunS, boundaryCondFunW, boundaryCondFunE)
# set initial state
hcl.setBoundaryCond(boundaryCondFunE, boundaryCondFunW, boundaryCondFunN, boundaryCondFunS)
hcl.setFluxAndSourceParams(u1 = u1_, u2 = u2_)
hcl.selfCheck()
# apply explicit time stepping
t = 0.
# flux is linear, i.e., eigenvalues are independent of time
eig = maxAbsEig(hcl)
CFL = 0.49
dt = 1.*CFL/eig
while t<Tmax:
if t+dt>Tmax:
dt=Tmax-t
t = hcl.timeStepExplicit(t, dt)
#plot result
pl.title('induction equation 2d')
pl.ion()
#pl.figure(1)
#pl.pcolor(xv, yv, hcl.getU(0), cmap='RdBu')
#pl.colorbar()
#pl.figure(2)
#pl.pcolor(xv, yv, hcl.getU(1), cmap='RdBu')
pl.imshow(hcl.getU(0), cmap='RdBu')
#pl.colorbar()
[ca, cb] = initialCondFun(xv, yv)
print("abs cons. error = ", abs(hcl.dx*hcl.dy*(np.sum(ca) - np.sum(hcl.getU(0)))) , abs(hcl.dx*hcl.dy*(np.sum(cb) - np.sum(hcl.getU(1)))) )
print("rel cons. error = ", abs(np.sum(ca) - np.sum(hcl.getU(0)))/(1e-14+abs(np.sum(ca))) , abs(np.sum(cb) - np.sum(hcl.getU(1)))/(1e-14+abs(np.sum(cb))) )
return hcl