forked from salesforce/hierarchicalContrastiveLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_deepfashion.py
517 lines (448 loc) · 21.3 KB
/
eval_deepfashion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
'''
* Copyright (c) 2022, salesforce.com, inc.
* All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
* For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
'''
import os
import math
import argparse
from data_processing.generate_dataset import DatasetCategory
from data_processing.hierarchical_dataset import DeepFashionHierarchihcalDatasetEval, BertDataset_rcv
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
from network.resnet_modified import LinearClassifier
from util.util import adjust_learning_rate, warmup_learning_rate, set_optimizer
from network import resnet_modified
import time
import sys
import shutil
import tensorboard_logger as tb_logger
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--data', metavar='DIR',
help='path to dataset, the superset of train/val')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--train-listfile', default='', type=str,
help='train file with annotation')
parser.add_argument('--val-listfile', default='', type=str,
help='validation file with annotation')
parser.add_argument('--test-listfile', default='', type=str,
help='test file with annotation')
parser.add_argument('--class-seen-file', default='', type=str,
help='seen classes text file')
parser.add_argument('--class-unseen-file', default='', type=str,
help='unseen classes text file')
parser.add_argument('--repeating-product-file', default='', type=str,
help='repeating product ids file')
parser.add_argument('--mode', default='val', type=str,
help='test or val')
parser.add_argument('--class-map-file', default='', type=str,
help='class mapping between str and int')
parser.add_argument('--input-size', default=224, type=int,
help='input size')
parser.add_argument('--scale-size', default=256, type=int,
help='scale size in validation')
parser.add_argument('--crop-size', default=224, type=int,
help='crop size')
parser.add_argument('--num-classes', type=int,
help='number of classes')
parser.add_argument('--epochs', type=int, default=100,
help='number of training epochs')
parser.add_argument('--ckpt', type=str,
help='the pth file to load')
parser.add_argument('--gpu', default=0, type=int,
help='GPU id to use.')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--pretrained', dest='pretrained', action='store_false',
help='use pre-trained model')
parser.add_argument('--feature-extract', action='store_false',
help='When flase, finetune the whole model; else only update the reshaped layer para')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.1,
help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='30,60,90',
help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.2,
help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=0,
help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum')
# other setting
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
parser.add_argument('--tag', type=str, default='',
help='tag for model name')
args = parser.parse_args()
iterations = args.lr_decay_epochs.split(',')
args.lr_decay_epochs = list([])
for it in iterations:
args.lr_decay_epochs.append(int(it))
return args
def main():
global args
args = parse_option()
best_acc = 0
args.save_folder = './model_linear/'
if not os.path.isdir(args.save_folder):
os.makedirs(args.save_folder)
args.tb_folder = './tensorboard'
if not os.path.isdir(args.tb_folder):
os.makedirs(args.tb_folder)
args.model_name = '{}_{}_{}_{}_lr_{}_decay_{}_bsz_{}_trial_{}'.\
format('hmlc', 'dataset', 'resnet50', os.path.split(args.ckpt)[1], args.learning_rate,
args.lr_decay_rate, args.batch_size, 5)
if args.tag:
args.model_name = args.model_name + '_tag_' + args.tag
if args.warm:
args.model_name = '{}_warm'.format(args.model_name)
args.warmup_from = 0.01
args.warm_epochs = 10
if args.cosine:
eta_min = args.learning_rate * (args.lr_decay_rate ** 3)
args.warmup_to = eta_min + (args.learning_rate - eta_min) * (
1 + math.cos(math.pi * args.warm_epochs / args.epochs)) / 2
else:
args.warmup_to = args.learning_rate
args.tb_folder = os.path.join(args.tb_folder, args.model_name)
args.save_folder = os.path.join(args.save_folder, args.model_name)
if not os.path.isdir(args.save_folder):
os.makedirs(args.save_folder)
logger = tb_logger.Logger(logdir=args.tb_folder, flush_secs=2)
# build model and criterion
model, classifier, criterion = set_model(args)
cudnn.benchmark = True
dataloaders_dict,_ = load_deep_fashion_hierarchical(args.data, args.train_listfile,
args.val_listfile, args.test_listfile, args.class_map_file, args.repeating_product_file,
args.input_size, args.batch_size, args.crop_size)
train_loader = dataloaders_dict['train']
val_loader = dataloaders_dict['val']
test_loader = dataloaders_dict['test']
optimizer = set_optimizer(args, classifier)
# training routine
for epoch in range(1, args.epochs + 1):
print("Start training epoch {}".format(epoch))
adjust_learning_rate(args, optimizer, epoch)
# train for one epoch
time1 = time.time()
loss, acc_top1, acc_top5 = train(train_loader, model, classifier, criterion,
optimizer, epoch, args)
time2 = time.time()
logger.log_value('loss', loss, epoch)
print('Train epoch {}, total time {:.3f}, accuracy_top1:{:.3f}, accuracy_top5:{:.3f}'.format(
epoch, time2 - time1, acc_top1, acc_top5))
# eval for one epoch
loss, val_acc_top1, val_acc_top5 = validate(val_loader, model, classifier, criterion, args)
logger.log_value('val_loss', loss, epoch)
logger.log_value('val_top1', val_acc_top1, epoch)
if val_acc_top1 > best_acc:
loss_test, test_acc_top1, test_acc_top5 = test(test_loader, model, classifier, criterion, args)
best_acc = val_acc_top1
best_test_acc = test_acc_top1
output_file = args.save_folder + '/checkpoint_{:04d}.pth.tar'.format(epoch)
save_checkpoint({
'epoch': epoch + 1,
'arch': 'resnet50',
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'classifier': classifier.state_dict(),
}, is_best=False,
filename=output_file)
print('best accuracy: Val {:.3f}, Test {:.3f}'.format(best_acc, best_test_acc))
return
def set_model(args):
model = resnet_modified.MyResNet(name='resnet50')
criterion = torch.nn.CrossEntropyLoss()
classifier = LinearClassifier(name='resnet50', num_classes=args.num_classes)
ckpt = torch.load(args.ckpt, map_location='cpu')
state_dict = ckpt['state_dict']
if torch.cuda.is_available():
if torch.cuda.device_count() >= 1:
new_state_dict = {}
for k, v in state_dict.items():
k = k.replace("encoder", "encoder.module")
if k.startswith("module.head"):
k = k.replace("module.head", "head")
new_state_dict[k] = v
state_dict = new_state_dict
model = model.cuda()
model.encoder = torch.nn.DataParallel(model.encoder)
classifier = classifier.cuda()
criterion = criterion.cuda()
cudnn.benchmark = True
model.load_state_dict(state_dict)
return model, classifier, criterion
def train(train_loader, model, classifier, criterion, optimizer, epoch, args):
"""one epoch training"""
model.eval()
classifier.train()
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.3f')
top5 = AverageMeter('Acc@5', ':6.3f')
end = time.time()
for idx, (images, labels) in enumerate(train_loader):
data_time.update(time.time() - end)
images = images.cuda(non_blocking=True)
labels = torch.stack(labels, dim=1)[:, 0]
labels = labels.cuda(non_blocking=True)
bsz = labels.shape[0]
# warm-up learning rate
warmup_learning_rate(args, epoch, idx, len(train_loader), optimizer)
# compute loss
with torch.no_grad():
features = model.encoder(images)
output = classifier(features.detach())
loss = criterion(output, labels)
# update metric
losses.update(loss.item(), bsz)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
top1.update(acc1[0], bsz)
top5.update(acc5[0], bsz)
# SGD
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print info
if (idx + 1) % args.print_freq == 0:
print('Train: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, idx + 1, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
sys.stdout.flush()
return losses.avg, top1.avg, top5.avg
def validate(val_loader, model, classifier, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.3f')
top5 = AverageMeter('Acc@5', ':6.3f')
# switch to evaluate mode
model.eval()
classifier.eval()
with torch.no_grad():
end = time.time()
for idx, (images, labels) in enumerate(val_loader):
images = images.float().cuda()
labels = torch.stack(labels, dim=1)[:, 0]
labels = labels.cuda()
bsz = labels.shape[0]
# forward
output = classifier(model.encoder(images))
loss = criterion(output, labels)
# update metric
losses.update(loss.item(), bsz)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
top1.update(acc1[0], bsz)
top5.update(acc5[0], bsz)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % args.print_freq == 0:
print('Val: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
idx, len(val_loader), batch_time=batch_time,
loss=losses, top1=top1, top5=top5))
# TODO: this should also be done with the ProgressMeter
print(' * Val Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return losses.avg, top1.avg, top5.avg
def test(test_loader, model, classifier, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.3f')
top5 = AverageMeter('Acc@5', ':6.3f')
# switch to evaluate mode
model.eval()
classifier.eval()
with torch.no_grad():
end = time.time()
for idx, (images, labels) in enumerate(test_loader):
images = images.float().cuda()
labels = torch.stack(labels, dim=1)[:, 0]
labels = labels.cuda()
bsz = labels.shape[0]
# forward
output = classifier(model.encoder(images))
loss = criterion(output, labels)
# update metric
losses.update(loss.item(), bsz)
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
top1.update(acc1[0], bsz)
top5.update(acc5[0], bsz)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if idx % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
idx, len(test_loader), batch_time=batch_time,
loss=losses, top1=top1, top5=top5))
# TODO: this should also be done with the ProgressMeter
print(' * Test Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return losses.avg, top1.avg, top5.avg
def load_data(root_dir, train_listfile, val_listfile, test_listfile, class_map_file,
class_seen_file, class_unseen_file,
input_size, scale_size, crop_size, batch_size):
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
print("Initializing Datasets and Dataloaders...")
# Create training and validation datasets
train_dataset = DatasetCategory(root_dir, 'train', train_listfile,
val_listfile, test_listfile, class_map_file,
class_seen_file, class_unseen_file,
data_transforms['train'])
val_dataset = DatasetCategory(root_dir, 'val', train_listfile,
val_listfile, test_listfile, class_map_file,
class_seen_file, class_unseen_file,
data_transforms['val'])
test_dataset = DatasetCategory(root_dir, 'test', train_listfile,
val_listfile, test_listfile, class_map_file,
class_seen_file, class_unseen_file,
data_transforms['test'])
image_datasets = {'train': train_dataset,
'val': val_dataset,
'test': test_dataset}
# Create training and validation dataloaders
dataloaders_dict = {
x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size,
shuffle=False, num_workers=0) for x in ['train', 'val', 'test']}
print("Finish Datasets and Dataloaders")
# Detect if we have GPU available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return dataloaders_dict, device
def load_deep_fashion_hierarchical(root_dir, train_list_file, val_list_file, test_list_file, class_map_file, repeating_product_file, input_size, batch_size,crop_size):
train_transform = transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
data_transforms = {
'train': train_transform,
'val': train_transform,
'test': train_transform}
train_dataset = DeepFashionHierarchihcalDatasetEval(os.path.join(root_dir, train_list_file),
os.path.join(root_dir, class_map_file),
os.path.join(root_dir, repeating_product_file),
transform=data_transforms['train'])
val_dataset = DeepFashionHierarchihcalDatasetEval(os.path.join(root_dir, val_list_file),
os.path.join(root_dir, class_map_file),
os.path.join(root_dir, repeating_product_file),
transform=data_transforms['val'])
test_dataset = DeepFashionHierarchihcalDatasetEval(os.path.join(root_dir, test_list_file),
os.path.join(root_dir, class_map_file),
os.path.join(root_dir, repeating_product_file),
transform=data_transforms['test'])
image_datasets = {'train': train_dataset,
'val': val_dataset,
'test': test_dataset}
dataloaders_dict = {
x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size,
shuffle=False, num_workers=16) for x in ['train', 'val', 'test']}
# Detect if we have GPU available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return dataloaders_dict, device
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
print('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
if __name__ == '__main__':
main()