diff --git a/src/gpytoolbox/sdf_flow.py b/src/gpytoolbox/sdf_flow.py index 6c591483..7320bae1 100644 --- a/src/gpytoolbox/sdf_flow.py +++ b/src/gpytoolbox/sdf_flow.py @@ -198,7 +198,7 @@ def sdf_flow_iteration(state, state.h = default_params[dim]['h'] if state.U is None: assert state.sdf is not None, "If you do not provide U, you must provide an sdf function to sample." - state.U = sample_sdf(state.sdf, state.V, state.F) + state.U = _sample_sdf(state.sdf, state.V, state.F) if state.S is None: assert state.sdf is not None, "If you do not provide U, you must provide an sdf function to sample." state.S = state.sdf(state.U) @@ -259,7 +259,7 @@ def sdf_flow_iteration(state, pe = np.sum(state.V[state.F[I,:],:]*b[...,None], axis=1) pemU = pe-state.U_batch if inside_outside_test: - s = -np.sign(np.sum(pemU*normals(state.V,state.F)[I,:], axis=-1)) + s = -np.sign(np.sum(pemU*_normals(state.V,state.F)[I,:], axis=-1)) hit_sides = np.any(b<1e-3, axis=-1) #too close to vertex s[hit_sides] = np.sign(state.S_batch)[hit_sides] else: @@ -288,7 +288,7 @@ def sdf_flow_iteration(state, state.F[I,:].ravel())), (state.U_batch.shape[0],state.V.shape[0])) c = wu[:,None]*ps - M = massmatrix(state.V, state.F) + M = _massmatrix(state.V, state.F) rho = 1.0*np.ones(state.U_batch.shape[0]) / A.shape[0] R = sp.sparse.spdiags([rho], 0, rho.shape[0], rho.shape[0]) @@ -343,7 +343,7 @@ def sdf_flow_iteration(state, state.h = np.maximum(state.h/2,state.min_h) if state.convergence_counter > 100 or F_invalid.shape[0] == 0: if state.resample_counter