-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathrunlengthintegerwriterv2.go
788 lines (672 loc) · 19.8 KB
/
runlengthintegerwriterv2.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
package orc
import (
"fmt"
"io"
"math"
)
type RunLengthIntegerWriterV2 struct {
w io.ByteWriter
signed bool
alignedBitpacking bool
numLiterals int
literals []int64
encoding RLEEncodingType
prevDelta int64
fixedDelta int64
zzBits90p int
zzBits100p int
brBits95p int
brBits100p int
bitsDeltaMax int
patchGapWidth int
patchLength int
patchWidth int
gapVsPatchList []int64
isFixedDelta bool
variableRunLength int
fixedRunLength int
zigzagLiterals []int64
baseRedLiterals []int64
adjDeltas []int64
min int64
minRepeatSize int
maxScope int
maxShortRepeatLength int
}
func NewRunLengthIntegerWriterV2(w io.ByteWriter, signed bool) *RunLengthIntegerWriterV2 {
i := &RunLengthIntegerWriterV2{
w: w,
signed: signed,
literals: make([]int64, MaxScope, MaxScope),
zigzagLiterals: make([]int64, MaxScope, MaxScope),
baseRedLiterals: make([]int64, MaxScope, MaxScope),
adjDeltas: make([]int64, MaxScope, MaxScope),
alignedBitpacking: true,
minRepeatSize: MinRepeatSize,
maxScope: MaxScope,
maxShortRepeatLength: MaxShortRepeatLength,
}
i.clear()
return i
}
func (i *RunLengthIntegerWriterV2) Flush() error {
if i.numLiterals != 0 {
if i.variableRunLength != 0 {
err := i.determineEncoding()
if err != nil {
return err
}
return i.writeValues()
} else if i.fixedRunLength != 0 {
if i.fixedRunLength < i.minRepeatSize {
i.variableRunLength = i.fixedRunLength
i.fixedRunLength = 0
err := i.determineEncoding()
if err != nil {
return err
}
return i.writeValues()
} else if i.fixedRunLength >= i.minRepeatSize &&
i.fixedRunLength <= i.maxShortRepeatLength {
i.encoding = RLEV2IntShortRepeat
return i.writeValues()
} else {
i.encoding = RLEV2IntDelta
i.isFixedDelta = true
return i.writeValues()
}
}
}
return nil
}
func (i *RunLengthIntegerWriterV2) WriteInt(val int64) error {
if i.numLiterals == 0 {
i.initializeLiterals(val)
} else {
if i.numLiterals == 1 {
i.prevDelta = val - i.literals[0]
i.literals[i.numLiterals] = val
i.numLiterals++
// if both values are same count as fixed run else variable run
if val == i.literals[0] {
i.fixedRunLength = 2
i.variableRunLength = 0
} else {
i.fixedRunLength = 0
i.variableRunLength = 2
}
} else {
currentDelta := val - i.literals[i.numLiterals-1]
if i.prevDelta == 0 && currentDelta == 0 {
// fixed delta run
i.literals[i.numLiterals] = val
i.numLiterals++
// if variable run is non-zero then we are seeing repeating
// values at the end of variable run in which case keep
// updating variable and fixed runs
if i.variableRunLength > 0 {
i.fixedRunLength = 2
}
i.fixedRunLength += 1
// if fixed run met the minimum condition and if variable
// run is non-zero then flush the variable run and shift the
// tail fixed runs to start of the buffer
if i.fixedRunLength >= i.minRepeatSize && i.variableRunLength > 0 {
i.numLiterals -= i.minRepeatSize
i.variableRunLength -= i.minRepeatSize - 1
// copy the tail fixed runs
tailVals := make([]int64, i.minRepeatSize)
copy(tailVals, i.literals[i.numLiterals:i.numLiterals+i.minRepeatSize])
// determine variable encoding and flush values
err := i.determineEncoding()
if err != nil {
return err
}
err = i.writeValues()
if err != nil {
return err
}
// shift tail fixed runs to beginning of the buffer
for _, l := range tailVals {
i.literals[i.numLiterals] = l
i.numLiterals++
}
}
// if fixed runs reached max repeat length then write values
if i.fixedRunLength == i.maxScope {
err := i.determineEncoding()
if err != nil {
return err
}
err = i.writeValues()
if err != nil {
return err
}
}
} else {
// variable delta run
// if fixed run length is non-zero and if it satisfies the
// short repeat conditions then write the values as short repeats
// else use delta encoding
if i.fixedRunLength >= i.minRepeatSize {
if i.fixedRunLength <= i.maxShortRepeatLength {
i.encoding = RLEV2IntShortRepeat
err := i.writeValues()
if err != nil {
return err
}
} else {
i.encoding = RLEV2IntDelta
i.isFixedDelta = true
err := i.writeValues()
if err != nil {
return err
}
}
}
// if fixed run length is <MIN_REPEAT and current value is
// different from previous then treat it as variable run
if i.fixedRunLength > 0 && i.fixedRunLength < i.minRepeatSize {
if val != i.literals[i.numLiterals-1] {
i.variableRunLength = i.fixedRunLength
i.fixedRunLength = 0
}
}
// after writing values re-initialize the variables
if i.numLiterals == 0 {
i.initializeLiterals(val)
} else {
// keep updating variable run lengths
i.prevDelta = val - i.literals[i.numLiterals-1]
i.literals[i.numLiterals] = val
i.numLiterals++
i.variableRunLength++
// if variable run length reach the max scope, write it
if i.variableRunLength == i.maxScope {
err := i.determineEncoding()
if err != nil {
return err
}
err = i.writeValues()
if err != nil {
return err
}
}
}
}
}
}
return nil
}
func (i *RunLengthIntegerWriterV2) writeValues() error {
if i.numLiterals != 0 {
switch i.encoding {
case RLEV2IntShortRepeat:
err := i.writeShortRepeatValues()
if err != nil {
return err
}
case RLEV2IntDirect:
err := i.writeDirectValues()
if err != nil {
return err
}
case RLEV2IntPatchedBase:
err := i.writePatchedBaseValues()
if err != nil {
return err
}
default:
err := i.writeDeltaValues()
if err != nil {
return err
}
}
i.clear()
}
return nil
}
func (i *RunLengthIntegerWriterV2) Close() error {
return i.Flush()
}
func (i *RunLengthIntegerWriterV2) clear() {
i.numLiterals = 0
i.encoding = RLEV2IntDirect
i.prevDelta = 0
i.fixedDelta = 0
i.zzBits90p = 0
i.zzBits100p = 0
i.brBits95p = 0
i.brBits100p = 0
i.bitsDeltaMax = 0
i.patchGapWidth = 0
i.patchLength = 0
i.patchWidth = 0
i.gapVsPatchList = []int64{}
i.min = 0
i.isFixedDelta = true
}
func (i *RunLengthIntegerWriterV2) determineEncoding() error {
// we need to compute zigzag values for DIRECT encoding if we decide to
// break early for delta overflows or for shorter runs
i.computeZigZagLiterals()
i.zzBits100p = percentileBits(i.zigzagLiterals, 0, i.numLiterals, 1.0)
// not a big win for shorter runs to determine encoding
if i.numLiterals <= i.minRepeatSize {
i.encoding = RLEV2IntDirect
return nil
}
// Delta encoding check
// for identifying monotonic sequences
isIncreasing := true
isDecreasing := true
i.isFixedDelta = true
i.min = i.literals[0]
max := i.literals[0]
initialDelta := i.literals[1] - i.literals[0]
currDelta := initialDelta
deltaMax := initialDelta
i.adjDeltas[0] = initialDelta
for j := 1; j < i.numLiterals; j++ {
l1 := i.literals[j]
l0 := i.literals[j-1]
currDelta = l1 - l0
i.min = minInt64(i.min, l1)
max = maxInt64(max, l1)
isIncreasing = isIncreasing && (l0 <= l1)
isDecreasing = isDecreasing && (l0 >= l1)
i.isFixedDelta = i.isFixedDelta && (currDelta == initialDelta)
if j > 1 {
i.adjDeltas[j-1] = absInt64(currDelta)
deltaMax = maxInt64(deltaMax, i.adjDeltas[j-1])
}
}
// its faster to exit under delta overflow condition without checking for
// PATCHED_BASE condition as encoding using DIRECT is faster and has less
// overhead than PATCHED_BASE
if !isSafeSubtract(max, i.min) {
i.encoding = RLEV2IntDirect
return nil
}
// invariant - subtracting any number from any other in the literals after
// this point won't overflow
// if min is equal to max then the delta is 0, this condition happens for
// fixed values run >10 which cannot be encoded with SHORT_REPEAT
if i.min == max {
if !i.isFixedDelta {
return fmt.Errorf("%v == %v, isFixedDelta cannot be false", i.min, max)
}
if currDelta != 0 {
return fmt.Errorf("%v == %v, currDelta should be zero", i.min, max)
}
i.fixedDelta = 0
i.encoding = RLEV2IntDelta
return nil
}
if i.isFixedDelta {
if currDelta != initialDelta {
return fmt.Errorf("currDelta should be equal to initialDelta for fixed delta encoding")
}
i.encoding = RLEV2IntDelta
i.fixedDelta = currDelta
return nil
}
// if initialDelta is 0 then we cannot delta encode as we cannot identify
// the sign of deltas (increasing or decreasing)
if initialDelta != 0 {
// stores the number of bits required for packing delta blob in
// delta encoding
i.bitsDeltaMax = findClosestNumBits(deltaMax)
// monotonic condition
if isIncreasing || isDecreasing {
i.encoding = RLEV2IntDelta
return nil
}
}
// PATCHED_BASE encoding check
// percentile values are computed for the zigzag encoded values. if the
// number of bit requirement between 90th and 100th percentile varies
// beyond a threshold then we need to patch the values. if the variation
// is not significant then we can use direct encoding
i.zzBits90p = percentileBits(i.zigzagLiterals, 0, i.numLiterals, 0.9)
diffBitsLH := i.zzBits100p - i.zzBits90p
// if the difference between 90th percentile and 100th percentile fixed
// bits is > 1 then we need patch the values
if diffBitsLH > 1 {
// patching is done only on base reduced values.
// remove base from literals
for j := 0; j < i.numLiterals; j++ {
i.baseRedLiterals[j] = i.literals[j] - i.min
}
// 95th percentile width is used to determine max allowed value
// after which patching will be done
i.brBits95p = percentileBits(i.baseRedLiterals, 0, i.numLiterals, 0.95)
// 100th percentile is used to compute the max patch width
i.brBits100p = percentileBits(i.baseRedLiterals, 0, i.numLiterals, 1.0)
// after base reducing the values, if the difference in bits between
// 95th percentile and 100th percentile value is zero then there
// is no point in patching the values, in which case we will
// fallback to DIRECT encoding.
// The decision to use patched base was based on zigzag values, but the
// actual patching is done on base reduced literals.
if (i.brBits100p - i.brBits95p) != 0 {
i.encoding = RLEV2IntPatchedBase
i.preparePatchedBlob()
return nil
}
i.encoding = RLEV2IntDirect
return nil
}
// if difference in bits between 95th percentile and 100th percentile is
// 0, then patch length will become 0. Hence we will fallback to direct
i.encoding = RLEV2IntDirect
return nil
}
func (i *RunLengthIntegerWriterV2) computeZigZagLiterals() {
// populate zigzag encoded literals
for j := 0; j < i.numLiterals; j++ {
if i.signed {
i.zigzagLiterals[j] = int64(zigzagEncode(i.literals[j]))
} else {
i.zigzagLiterals[j] = i.literals[j]
}
}
}
func (i *RunLengthIntegerWriterV2) preparePatchedBlob() {
// mask will be max value beyond which patch will be generated
mask := (int64(1) << uint64(i.brBits95p)) - 1
// since we are considering only 95 percentile, the size of gap and
// patch array can contain only be 5% values
i.patchLength = int(math.Ceil(float64(i.numLiterals) * 0.05))
var gapList []int
var patchList []int64
// #bit for patch
i.patchWidth = i.brBits100p - i.brBits95p
i.patchWidth = getClosestFixedBits(i.patchWidth)
// if patch bit requirement is 64 then it will not possible to pack
// gap and patch together in a long. To make sure gap and patch can be
// packed together adjust the patch width
if i.patchWidth == 64 {
i.patchWidth = 56
i.brBits95p = 8
mask = (1 << uint64(i.brBits95p)) - 1
}
prev := 0
gap := 0
maxGap := 0
for j := 0; j < i.numLiterals; j++ {
// if value is above mask then create the patch and record the gap
if i.baseRedLiterals[j] > mask {
gap = j - prev
if gap > maxGap {
maxGap = gap
}
// gaps are relative, so store the previous patched value index
prev = j
gapList = append(gapList, gap)
// extract the most significant bits that are over mask bits
patch := int64(uint64(i.baseRedLiterals[j]) >> uint64(i.brBits95p))
patchList = append(patchList, patch)
// strip off the MSB to enable safe bit packing
i.baseRedLiterals[j] &= int64(mask)
}
}
// adjust the patch length to number of entries in gap list
i.patchLength = len(gapList)
// if the element to be patched is the first and only element then
// max gap will be 0, but to store the gap as 0 we need atleast 1 bit
if maxGap == 0 && i.patchLength != 0 {
i.patchGapWidth = 1
} else {
i.patchGapWidth = findClosestNumBits(int64(maxGap))
}
// special case: if the patch gap width is greater than 256, then
// we need 9 bits to encode the gap width. But we only have 3 bits in
// header to record the gap width. To deal with this case, we will save
// two entries in patch list in the following way
// 256 gap width => 0 for patch value
// actual gap - 256 => actual patch value
// We will do the same for gap width = 511. If the element to be patched is
// the last element in the scope then gap width will be 511. In this case we
// will have 3 entries in the patch list in the following way
// 255 gap width => 0 for patch value
// 255 gap width => 0 for patch value
// 1 gap width => actual patch value
if i.patchGapWidth > 8 {
i.patchGapWidth = 8
// for gap = 511, we need two additional entries in patch list
if maxGap == 511 {
i.patchLength += 2
} else {
i.patchLength++
}
}
// create gap vs patch list
gapIdx := 0
patchIdx := 0
i.gapVsPatchList = make([]int64, i.patchLength, i.patchLength)
for j := 0; j < i.patchLength; j++ {
g := gapList[gapIdx]
gapIdx++
p := patchList[patchIdx]
patchIdx++
for g > 255 {
i.gapVsPatchList[j] = (255 << uint64(i.patchWidth))
j++
g -= 255
}
// store patch value in LSBs and gap in MSBs
i.gapVsPatchList[j] = int64(g<<uint64(i.patchWidth)) | int64(p)
}
}
func (i *RunLengthIntegerWriterV2) initializeLiterals(val int64) {
i.literals[i.numLiterals] = val
i.numLiterals++
i.fixedRunLength = 1
i.variableRunLength = 1
}
func (i *RunLengthIntegerWriterV2) writeShortRepeatValues() error {
var repeatVal int64
if i.signed {
repeatVal = int64(zigzagEncode(i.literals[0]))
} else {
repeatVal = i.literals[0]
}
numBitsRepeatVal := findClosestNumBits(repeatVal)
var numBytesRepeatVal int
if numBitsRepeatVal%8 == 0 {
numBytesRepeatVal = int(uint64(numBitsRepeatVal) >> 3)
} else {
numBytesRepeatVal = int(uint64(numBitsRepeatVal)>>3) + 1
}
header := i.getOpCode()
header |= (numBytesRepeatVal - 1) << 3
i.fixedRunLength -= i.minRepeatSize
header |= i.fixedRunLength
err := i.w.WriteByte(uint8(header))
if err != nil {
return err
}
for j := numBytesRepeatVal - 1; j >= 0; j-- {
b := uint8((uint64(repeatVal) >> uint64(j*8)) & 0xff)
err := i.w.WriteByte(b)
if err != nil {
return err
}
}
i.fixedRunLength = 0
return nil
}
func (i *RunLengthIntegerWriterV2) getOpCode() int {
return int(i.encoding << 6)
}
func (i *RunLengthIntegerWriterV2) writeDirectValues() error {
fb := i.zzBits100p
if i.alignedBitpacking {
fb = getClosestAlignedFixedBits(fb)
}
efb := encodeBitWidth(fb) << 1
i.variableRunLength--
tailBits := int(uint64(i.variableRunLength&0x100) >> 8)
headerFirstByte := i.getOpCode() | efb | tailBits
headerSecondByte := i.variableRunLength & 0xff
err := i.w.WriteByte(uint8(headerFirstByte))
if err != nil {
return err
}
err = i.w.WriteByte(uint8(headerSecondByte))
if err != nil {
return err
}
err = writeInts(i.zigzagLiterals, 0, i.numLiterals, fb, i.w)
if err != nil {
return err
}
i.variableRunLength = 0
return nil
}
func (i *RunLengthIntegerWriterV2) writePatchedBaseValues() error {
// NOTE: Aligned bit packing cannot be applied for PATCHED_BASE encoding
// because patch is applied to MSB bits. For example: If fixed bit width of
// base value is 7 bits and if patch is 3 bits, the actual value is
// constructed by shifting the patch to left by 7 positions.
// actual_value = patch << 7 | base_value
// So, if we align base_value then actual_value can not be reconstructed.
fb := i.brBits95p
efb := encodeBitWidth(fb) << 1
i.variableRunLength--
tailBits := int(uint64(i.variableRunLength&0x100) >> 8)
headerFirstByte := i.getOpCode() | efb | tailBits
headerSecondByte := i.variableRunLength & 0xff
var isNegative bool
if i.min < 0 {
isNegative = true
}
if isNegative {
i.min = -i.min
}
baseWidth := findClosestNumBits(i.min) + 1
var baseBytes int
if baseWidth%8 == 0 {
baseBytes = baseWidth / 8
} else {
baseBytes = (baseWidth / 8) + 1
}
bb := (baseBytes - 1) << 5
if isNegative {
i.min |= (1 << uint64((baseBytes*8)-1))
}
headerThirdByte := bb | encodeBitWidth(i.patchWidth)
headerFourthByte := (i.patchGapWidth-1)<<5 | i.patchLength
err := i.w.WriteByte(uint8(headerFirstByte))
if err != nil {
return err
}
err = i.w.WriteByte(uint8(headerSecondByte))
if err != nil {
return err
}
err = i.w.WriteByte(uint8(headerThirdByte))
if err != nil {
return err
}
err = i.w.WriteByte(uint8(headerFourthByte))
if err != nil {
return err
}
for j := baseBytes - 1; j >= 0; j-- {
b := byte((uint64(i.min) >> uint64(j*8)) & 0xff)
err = i.w.WriteByte(b)
if err != nil {
return err
}
}
closestFixedBits := getClosestFixedBits(fb)
err = writeInts(i.baseRedLiterals, 0, i.numLiterals, closestFixedBits, i.w)
if err != nil {
return err
}
closestFixedBits = getClosestFixedBits(i.patchGapWidth + i.patchWidth)
err = writeInts(i.gapVsPatchList, 0, len(i.gapVsPatchList), closestFixedBits, i.w)
if err != nil {
return err
}
i.variableRunLength = 0
return nil
}
func (i *RunLengthIntegerWriterV2) writeDeltaValues() error {
len := 0
fb := i.bitsDeltaMax
efb := 0
if i.alignedBitpacking {
fb = getClosestAlignedFixedBits(fb)
}
if i.isFixedDelta {
// if fixed run length is greater than threshold then it will be fixed
// delta sequence with delta value 0 else fixed delta sequence with
// non-zero delta value
if i.fixedRunLength > MinRepeatSize {
// ex. sequence: 2 2 2 2 2 2 2 2
len = i.fixedRunLength - 1
i.fixedRunLength = 0
} else {
// ex. sequence: 4 6 8 10 12 14 16
len = i.variableRunLength - 1
i.variableRunLength = 0
}
} else {
// fixed width 0 is used for long repeating values.
// sequences that require only 1 bit to encode will have an additional bit
if fb == 1 {
fb = 2
}
efb = encodeBitWidth(fb)
efb <<= 1
len = i.variableRunLength - 1
i.variableRunLength = 0
}
tailBits := int((len & 0x100) >> 8)
headerFirstByte := i.getOpCode() | efb | tailBits
headerSecondByte := len & 0xff
err := i.w.WriteByte(uint8(headerFirstByte))
if err != nil {
return err
}
err = i.w.WriteByte(uint8(headerSecondByte))
if err != nil {
return err
}
if i.signed {
err := writeVslong(i.w, i.literals[0])
if err != nil {
return err
}
} else {
err := writeVulong(i.w, i.literals[0])
if err != nil {
return err
}
}
if i.isFixedDelta {
// if delta is fixed then we don't need to store delta blob
err := writeVslong(i.w, i.fixedDelta)
if err != nil {
return err
}
} else {
// store the first value as delta value using zigzag encoding
err := writeVslong(i.w, i.adjDeltas[0])
if err != nil {
return err
}
// adjacent delta values are bit packed. The length of adjDeltas array is
// always one less than the number of literals (delta difference for n
// elements is n-1). We have already written one element, write the
// remaining numLiterals - 2 elements here
err = writeInts(i.adjDeltas, 1, i.numLiterals-2, fb, i.w)
if err != nil {
return err
}
}
return nil
}