From f381923362ecc5ca480cd07d2d1f52414c87a631 Mon Sep 17 00:00:00 2001 From: Sathvik Bhagavan Date: Tue, 5 Mar 2024 04:56:13 +0000 Subject: [PATCH 1/2] chore: format docstrings to make it consistent with others --- src/dgm.jl | 61 +++++++++++++++++++++++------------------------------- 1 file changed, 26 insertions(+), 35 deletions(-) diff --git a/src/dgm.jl b/src/dgm.jl index ac273b2cbe..886deef09a 100644 --- a/src/dgm.jl +++ b/src/dgm.jl @@ -95,8 +95,9 @@ function (l::dgm)(x::AbstractVecOrMat{T}, ps, st::NamedTuple) where T end """ -`dgm(in_dims::Int, out_dims::Int, modes::Int, L::Int, activation1, activation2, out_activation= Lux.identity)`: -returns the architecture defined for Deep Galerkin method + dgm(in_dims::Int, out_dims::Int, modes::Int, L::Int, activation1, activation2, out_activation= Lux.identity) + +returns the architecture defined for Deep Galerkin method. ```math \\begin{align} @@ -109,22 +110,17 @@ S^{l+1} &= (1 - G^l) \\cdot H^l + Z^l \\cdot S^{l}; \\quad l = 1, \\ldots, L; \\ f(t, x, \\theta) &= \\sigma_{out}(W S^{L+1} + b). \\end{align} ``` -## Positional Arguments: -`in_dims`: number of input dimensions= (spatial dimension+ 1) - -`out_dims`: number of output dimensions - -`modes`: Width of the LSTM type layer (output of the first Dense layer) -`layers`: number of LSTM type layers - -`activation1`: activation function used in LSTM type layers - -`activation2`: activation function used for the output of LSTM type layers - -`out_activation`: activation fn used for the output of the network +## Positional Arguments: -`kwargs`: additional arguments to be splatted into `PhysicsInformedNN` +- `in_dims`: number of input dimensions = (spatial dimension + 1). +- `out_dims`: number of output dimensions. +- `modes`: Width of the LSTM type layer (output of the first Dense layer). +- `layers`: number of LSTM type layers. +- `activation1`: activation function used in LSTM type layers. +- `activation2`: activation function used for the output of LSTM type layers. +- `out_activation`: activation fn used for the output of the network. +- `kwargs`: additional arguments to be splatted into [`PhysicsInformedNN`](@ref). """ function dgm(in_dims::Int, out_dims::Int, modes::Int, layers::Int, activation1, activation2, out_activation) dgm( @@ -135,34 +131,29 @@ function dgm(in_dims::Int, out_dims::Int, modes::Int, layers::Int, activation1, end """ -`DeepGalerkin(in_dims::Int, out_dims::Int, modes::Int, L::Int, activation1::Function, activation2::Function, out_activation::Function, - strategy::NeuralPDE.AbstractTrainingStrategy; kwargs...)`: + DeepGalerkin(in_dims::Int, out_dims::Int, modes::Int, L::Int, activation1::Function, activation2::Function, out_activation::Function, + strategy::NeuralPDE.AbstractTrainingStrategy; kwargs...) -returns a `discretize` algorithm for the ModelingToolkit PDESystem interface, which transforms a `PDESystem` into an - `OptimizationProblem` using the Deep Galerkin method. +returns a `discretize` algorithm for the ModelingToolkit PDESystem interface, which transforms a `PDESystem` into an `OptimizationProblem` using the Deep Galerkin method. ## Arguments: -`in_dims`: number of input dimensions= (spatial dimension+ 1) -`out_dims`: number of output dimensions - -`modes`: Width of the LSTM type layer - -`L`: number of LSTM type layers - -`activation1`: activation fn used in LSTM type layers - -`activation2`: activation fn used for the output of LSTM type layers - -`out_activation`: activation fn used for the output of the network - -`kwargs`: additional arguments to be splatted into `PhysicsInformedNN` +- `in_dims`: number of input dimensions = (spatial dimension + 1). +- `out_dims`: number of output dimensions. +- `modes`: Width of the LSTM type layer. +- `L`: number of LSTM type layers. +- `activation1`: activation fn used in LSTM type layers. +- `activation2`: activation fn used for the output of LSTM type layers. +- `out_activation`: activation fn used for the output of the network. +- `kwargs`: additional arguments to be splatted into [`PhysicsInformedNN`](@ref). ## Examples + ```julia -discretization= DeepGalerkin(2, 1, 30, 3, tanh, tanh, identity, QuasiRandomTraining(4_000)); +discretization = DeepGalerkin(2, 1, 30, 3, tanh, tanh, identity, QuasiRandomTraining(4_000)) ``` ## References + Sirignano, Justin and Spiliopoulos, Konstantinos, "DGM: A deep learning algorithm for solving partial differential equations", Journal of Computational Physics, Volume 375, 2018, Pages 1339-1364, doi: https://doi.org/10.1016/j.jcp.2018.08.029 """ From 660edf94e8f83caeeb6ea93c94bb03ba3b2ea0eb Mon Sep 17 00:00:00 2001 From: Sathvik Bhagavan Date: Tue, 5 Mar 2024 04:56:52 +0000 Subject: [PATCH 2/2] test: update deprecated use of `res.minimizer` --- test/dgm_test.jl | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/test/dgm_test.jl b/test/dgm_test.jl index 32c3cfb2a3..b065e3e84b 100644 --- a/test/dgm_test.jl +++ b/test/dgm_test.jl @@ -35,14 +35,14 @@ import Lux: tanh, identity end res = Optimization.solve(prob, Adam(0.01); callback = callback, maxiters = 500) - prob = remake(prob, u0 = res.minimizer) + prob = remake(prob, u0 = res.u) res = Optimization.solve(prob, Adam(0.001); callback = callback, maxiters = 200) phi = discretization.phi xs, ys = [infimum(d.domain):0.01:supremum(d.domain) for d in domains] analytic_sol_func(x, y) = (sin(pi * x) * sin(pi * y)) / (2pi^2) - u_predict = reshape([first(phi([x, y], res.minimizer)) for x in xs for y in ys], + u_predict = reshape([first(phi([x, y], res.u)) for x in xs for y in ys], (length(xs), length(ys))) u_real = reshape([analytic_sol_func(x, y) for x in xs for y in ys], (length(xs), length(ys))) @@ -87,7 +87,7 @@ end end res = Optimization.solve(prob, Adam(0.01); callback = callback, maxiters = 300) - prob = remake(prob, u0 = res.minimizer) + prob = remake(prob, u0 = res.u) res = Optimization.solve(prob, Adam(0.001); callback = callback, maxiters = 300) phi = discretization.phi @@ -103,7 +103,7 @@ end xs = collect(infimum(domains2[2].domain):1.0:supremum(domains2[2].domain)) u_real= [analytic_sol_func(t,x) for t in ts, x in xs] - u_predict= [first(phi([t, x], res.minimizer)) for t in ts, x in xs] + u_predict= [first(phi([t, x], res.u)) for t in ts, x in xs] @test u_predict ≈ u_real rtol= 0.05 end @@ -154,7 +154,7 @@ end res = Optimization.solve(prob, Adam(0.01); callback = callback, maxiters = 300); phi = discretization.phi; - u_predict= [first(phi([t, x], res.minimizer)) for t in ts, x in xs] + u_predict= [first(phi([t, x], res.u)) for t in ts, x in xs] @test u_predict ≈ u_MOL rtol= 0.025