forked from martinkersner/train-DeepLab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
118 lines (94 loc) · 3.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/env python
# Martin Kersner, m.kersner@gmail.com
# 2016/03/11
import scipy.io
import struct
import numpy as np
def pascal_classes():
classes = {'aeroplane' : 1, 'bicycle' : 2, 'bird' : 3, 'boat' : 4,
'bottle' : 5, 'bus' : 6, 'car' : 7, 'cat' : 8,
'chair' : 9, 'cow' : 10, 'diningtable' : 11, 'dog' : 12,
'horse' : 13, 'motorbike' : 14, 'person' : 15, 'potted-plant' : 16,
'sheep' : 17, 'sofa' : 18, 'train' : 19, 'tv/monitor' : 20}
return classes
def pascal_palette():
palette = {( 0, 0, 0) : 0 ,
(128, 0, 0) : 1 ,
( 0, 128, 0) : 2 ,
(128, 128, 0) : 3 ,
( 0, 0, 128) : 4 ,
(128, 0, 128) : 5 ,
( 0, 128, 128) : 6 ,
(128, 128, 128) : 7 ,
( 64, 0, 0) : 8 ,
(192, 0, 0) : 9 ,
( 64, 128, 0) : 10,
(192, 128, 0) : 11,
( 64, 0, 128) : 12,
(192, 0, 128) : 13,
( 64, 128, 128) : 14,
(192, 128, 128) : 15,
( 0, 64, 0) : 16,
(128, 64, 0) : 17,
( 0, 192, 0) : 18,
(128, 192, 0) : 19,
( 0, 64, 128) : 20 }
return palette
def pascal_palette_invert():
palette_list = pascal_palette().keys()
palette = ()
for color in palette_list:
palette += color
return palette
def pascal_mean_values():
return np.array([103.939, 116.779, 123.68], dtype=np.float32)
def strstr(str1, str2):
if str1.find(str2) != -1:
return True
else:
return False
# Mat to png conversion for http://www.cs.berkeley.edu/~bharath2/codes/SBD/download.html
# 'GTcls' key is for class segmentation
# 'GTinst' key is for instance segmentation
def mat2png_hariharan(mat_file, key='GTcls'):
mat = scipy.io.loadmat(mat_file, mat_dtype=True, squeeze_me=True, struct_as_record=False)
return mat[key].Segmentation
def convert_segmentation_mat2numpy(mat_file):
np_segm = load_mat(mat_file)
return np.rot90(np.fliplr(np.argmax(np_segm, axis=2)))
def load_mat(mat_file, key='data'):
mat = scipy.io.loadmat(mat_file, mat_dtype=True, squeeze_me=True, struct_as_record=False)
return mat[key]
# Python version of script in code/densecrf/my_script/LoadBinFile.m
def load_binary_segmentation(bin_file, dtype='int16'):
with open(bin_file, 'rb') as bf:
rows = struct.unpack('i', bf.read(4))[0]
cols = struct.unpack('i', bf.read(4))[0]
channels = struct.unpack('i', bf.read(4))[0]
num_values = rows * cols # expect only one channel in segmentation output
out = np.zeros(num_values, dtype=np.uint8) # expect only values between 0 and 255
for i in range(num_values):
out[i] = np.uint8(struct.unpack('h', bf.read(2))[0])
return np.rot90(np.fliplr(out.reshape((cols, rows))))
def convert_from_color_segmentation(arr_3d):
arr_2d = np.zeros((arr_3d.shape[0], arr_3d.shape[1]), dtype=np.uint8)
palette = pascal_palette()
# slow!
for i in range(0, arr_3d.shape[0]):
for j in range(0, arr_3d.shape[1]):
key = (arr_3d[i,j,0], arr_3d[i,j,1], arr_3d[i,j,2])
arr_2d[i, j] = palette.get(key, 0) # default value if key was not found is 0
return arr_2d
def create_lut(class_ids, max_id=256):
# Index 0 is the first index used in caffe for denoting labels.
# Therefore, index 0 is considered as default.
lut = np.zeros(max_id, dtype=np.uint8)
new_index = 1
for i in class_ids:
lut[i] = new_index
new_index += 1
return lut
def get_id_classes(classes):
all_classes = pascal_classes()
id_classes = [all_classes[c] for c in classes]
return id_classes