-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
148 lines (113 loc) · 5.25 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# -*- coding: UTF-8 -*-
import logging
import numpy as np
from scipy import optimize
import torch
import torch.nn as nn
import torch.autograd as autograd
def hungarian_match(cluster_assignments, y_true, num_clusters):
"""
Find the best match between the cluster assignments and the ground truth labels (one-to-one mapping).
:param cluster_assignments: Cluster assignments of samples. ndarray, shape: [num_samples, ].
:param y_true: Ground truth labels of samples. ndarray, shape: [num_samples, ].
:param num_clusters: Number of the clusters.
:return: A list of tuples, cluster assignment to ground truth label.
"""
assert isinstance(cluster_assignments, np.ndarray)
assert isinstance(y_true, np.ndarray)
assert cluster_assignments.shape[0] == y_true.shape[0]
num_samples = cluster_assignments.shape[0]
num_correct = np.zeros((num_clusters, num_clusters), dtype=np.int32)
for c1 in range(num_clusters):
for c2 in range(num_clusters):
# elementwise, so each sample contributes once
votes = ((cluster_assignments == c1) * (y_true == c2)).sum(dtype=np.int32)
num_correct[c1, c2] = votes
# convert the maximization problem to a minimization problem, num_correct is small
row_id, col_id = optimize.linear_sum_assignment(num_samples - num_correct)
# return as list of tuples, cluster assignment to ground truth label
match = list()
for i in range(num_clusters):
assignment = row_id[i]
gt = col_id[i]
match.append((assignment, gt))
return match
def convert_cluster_assignment_to_ground_truth(cluster_assignments, match):
"""
Convert the cluster assignments to the ground truth labels.
:param cluster_assignments: Cluster assignments of samples. ndarray, shape: [num_samples, ].
:param match: The match between the cluster assignments and the ground truth labels.
:return: Mapped ground truth labels of samples. ndarray, shape: [num_samples, ].
"""
assert isinstance(cluster_assignments, np.ndarray)
mapped = np.empty_like(cluster_assignments)
for assignment, gt in match:
mapped[cluster_assignments == assignment] = gt
return mapped
def save_model(model, path):
if isinstance(model, nn.DataParallel):
torch.save(model.module.state_dict(), path)
else:
torch.save(model.state_dict(), path)
def load_model(model, path, strict=True):
state_dict = torch.load(path)
if isinstance(model, nn.DataParallel):
model.module.load_state_dict(state_dict, strict=strict)
else:
model.load_state_dict(state_dict, strict=strict)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
# If `val` is an instance of torch.Tensor, then the variables generated when calculating `val`
# during the forward propagation may be accumulated to `sum`, resulting in memory leaks.
if isinstance(val, torch.Tensor):
val = val.item()
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def sample_z(batch_size=64, dim_zs=30, dim_zc=10, fix_class=-1, zs_std=0.1):
assert (fix_class == -1 or (fix_class >= 0 and fix_class < dim_zc))
# Sample zs
zs = zs_std * np.random.randn(batch_size, dim_zs)
# Sample zc
if fix_class == -1:
zc_idx = np.random.randint(low=0, high=dim_zc, size=(batch_size,), dtype=np.int64)
else:
zc_idx = np.ones(shape=(batch_size,), dtype=np.int64) * fix_class
zc = np.eye(dim_zc)[zc_idx]
return zs, zc, zc_idx
def calc_gradient_penalty(critic, real_data, generated_data, lambda_gp):
# Calculate interpolation
b_size = real_data.size(0)
shape = [b_size] + [1] * (real_data.dim() - 1)
alpha = torch.rand(shape, dtype=torch.float32, device=real_data.device)
interpolated = alpha * real_data.detach() + (1 - alpha) * generated_data.detach()
interpolated.requires_grad_(True)
# Calculate scores of interpolated examples
score_interpolated = critic(interpolated)
# Calculate gradients of scores with respect to examples
gradients = autograd.grad(outputs=score_interpolated, inputs=interpolated,
grad_outputs=torch.ones_like(score_interpolated),
create_graph=True, retain_graph=True)[0]
# Flatten to easily take norm per example in batch
gradients = gradients.view(b_size, -1)
# Derivatives of the gradient close to 0 can cause problems because of
# the square root, so manually calculate norm and add epsilon
gradients_norm = torch.sqrt(torch.sum(gradients ** 2, dim=1) + 1e-12)
# Return gradient penalty
return lambda_gp * ((gradients_norm - 1) ** 2).mean()
def create_logger(fp):
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s')
console_logger = logging.getLogger('ConsoleLoggoer')
file_logger = logging.getLogger('FileLogger')
file_handler = logging.FileHandler(fp, mode='a', encoding='utf-8')
file_logger.addHandler(file_handler)
return console_logger, file_logger