This repository has been archived by the owner on Jun 24, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_have_cake.py
95 lines (80 loc) · 3.22 KB
/
example_have_cake.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from aimacode.planning import Action
from aimacode.search import (
breadth_first_search, astar_search, depth_first_graph_search,
uniform_cost_search, greedy_best_first_graph_search
)
from aimacode.utils import expr
from _utils import (
FluentState, encode_state, make_relations, run_search
)
from planning_problem import BasePlanningProblem
##############################################################################
# YOU DO NOT NEED TO MODIFY CODE IN THIS FILE #
##############################################################################
class HaveCakeProblem(BasePlanningProblem):
def __init__(self, initial, goal):
"""
Parameters
----------
initial : FluentState
A representation of the initial problem state as a collection
of positive and negative literals (each literal fluent should
be an `aimacode.utils.Expr` instance)
goal : iterable
A collection of literal fluents describing the goal state of
the problem (each fluent should be an instance of the
`aimacode.utils.Expr` class)
"""
super().__init__(initial, goal)
self.actions_list = self.get_actions()
def get_actions(self):
precond_pos = [expr("Have(Cake)")]
precond_neg = []
effect_add = [expr("Eaten(Cake)")]
effect_rem = [expr("Have(Cake)")]
eat_action = Action(expr("Eat(Cake)"),
[precond_pos, precond_neg],
[effect_add, effect_rem])
precond_pos = []
precond_neg = [expr("Have(Cake)")]
effect_add = [expr("Have(Cake)")]
effect_rem = []
bake_action = Action(expr("Bake(Cake)"),
[precond_pos, precond_neg],
[effect_add, effect_rem])
return [eat_action, bake_action]
def have_cake():
cakes = ['Cake']
have_relations = make_relations('Have', cakes)
eaten_relations = make_relations('Eaten', cakes)
def get_init():
pos = have_relations
neg = eaten_relations
return FluentState(pos, neg)
def get_goal():
return have_relations + eaten_relations
return HaveCakeProblem(get_init(), get_goal())
if __name__ == '__main__':
p = have_cake()
print("**** Have Cake example problem setup ****")
print("Fluents in this problem are:")
for f in p.state_map:
print(' {}'.format(f))
print("Initial state for this problem is {}".format(p.initial))
print("Actions for this domain are:")
for a in p.actions_list:
print(' {}{}'.format(a.name, a.args))
print("Goal requirement for this problem are:")
for g in p.goal:
print(' {}'.format(g))
print()
print("*** Breadth First Search")
run_search(p, breadth_first_search)
print("*** Depth First Search")
run_search(p, depth_first_graph_search)
print("*** Uniform Cost Search")
run_search(p, uniform_cost_search)
print("*** Greedy Best First Graph Search - null heuristic")
run_search(p, greedy_best_first_graph_search, parameter=lambda x: 0)
print("*** A-star null heuristic")
run_search(p, astar_search, lambda x: 0)