-
Notifications
You must be signed in to change notification settings - Fork 540
/
eval_sick.py
151 lines (123 loc) · 4.82 KB
/
eval_sick.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
'''
Evaluation code for the SICK dataset (SemEval 2014 Task 1)
'''
import numpy as np
import os.path
from sklearn.metrics import mean_squared_error as mse
from scipy.stats import pearsonr
from scipy.stats import spearmanr
from sklearn.utils import shuffle
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import Adam
def evaluate(encoder, seed=1234, evaltest=False, loc='./data/'):
"""
Run experiment
"""
print 'Preparing data...'
train, dev, test, scores = load_data(loc)
train[0], train[1], scores[0] = shuffle(train[0], train[1], scores[0], random_state=seed)
print 'Computing training skipthoughts...'
trainA = encoder.encode(train[0], verbose=False, use_eos=True)
trainB = encoder.encode(train[1], verbose=False, use_eos=True)
print 'Computing development skipthoughts...'
devA = encoder.encode(dev[0], verbose=False, use_eos=True)
devB = encoder.encode(dev[1], verbose=False, use_eos=True)
print 'Computing feature combinations...'
trainF = np.c_[np.abs(trainA - trainB), trainA * trainB]
devF = np.c_[np.abs(devA - devB), devA * devB]
print 'Encoding labels...'
trainY = encode_labels(scores[0])
devY = encode_labels(scores[1])
print 'Compiling model...'
lrmodel = prepare_model(ninputs=trainF.shape[1])
print 'Training...'
bestlrmodel = train_model(lrmodel, trainF, trainY, devF, devY, scores[1])
if evaltest:
print 'Computing test skipthoughts...'
testA = encoder.encode(test[0], verbose=False, use_eos=True)
testB = encoder.encode(test[1], verbose=False, use_eos=True)
print 'Computing feature combinations...'
testF = np.c_[np.abs(testA - testB), testA * testB]
print 'Evaluating...'
r = np.arange(1,6)
yhat = np.dot(bestlrmodel.predict_proba(testF, verbose=2), r)
pr = pearsonr(yhat, scores[2])[0]
sr = spearmanr(yhat, scores[2])[0]
se = mse(yhat, scores[2])
print 'Test Pearson: ' + str(pr)
print 'Test Spearman: ' + str(sr)
print 'Test MSE: ' + str(se)
return yhat
def prepare_model(ninputs=9600, nclass=5):
"""
Set up and compile the model architecture (Logistic regression)
"""
lrmodel = Sequential()
lrmodel.add(Dense(input_dim=ninputs, output_dim=nclass))
lrmodel.add(Activation('softmax'))
lrmodel.compile(loss='categorical_crossentropy', optimizer='adam')
return lrmodel
def train_model(lrmodel, X, Y, devX, devY, devscores):
"""
Train model, using pearsonr on dev for early stopping
"""
done = False
best = -1.0
r = np.arange(1,6)
while not done:
# Every 100 epochs, check Pearson on development set
lrmodel.fit(X, Y, verbose=2, shuffle=False, validation_data=(devX, devY))
yhat = np.dot(lrmodel.predict_proba(devX, verbose=2), r)
score = pearsonr(yhat, devscores)[0]
if score > best:
print score
best = score
bestlrmodel = prepare_model(ninputs=X.shape[1])
bestlrmodel.set_weights(lrmodel.get_weights())
else:
done = True
yhat = np.dot(bestlrmodel.predict_proba(devX, verbose=2), r)
score = pearsonr(yhat, devscores)[0]
print 'Dev Pearson: ' + str(score)
return bestlrmodel
def encode_labels(labels, nclass=5):
"""
Label encoding from Tree LSTM paper (Tai, Socher, Manning)
"""
Y = np.zeros((len(labels), nclass)).astype('float32')
for j, y in enumerate(labels):
for i in range(nclass):
if i+1 == np.floor(y) + 1:
Y[j,i] = y - np.floor(y)
if i+1 == np.floor(y):
Y[j,i] = np.floor(y) - y + 1
return Y
def load_data(loc='./data/'):
"""
Load the SICK semantic-relatedness dataset
"""
trainA, trainB, devA, devB, testA, testB = [],[],[],[],[],[]
trainS, devS, testS = [],[],[]
with open(os.path.join(loc, 'SICK_train.txt'), 'rb') as f:
for line in f:
text = line.strip().split('\t')
trainA.append(text[1])
trainB.append(text[2])
trainS.append(text[3])
with open(os.path.join(loc, 'SICK_trial.txt'), 'rb') as f:
for line in f:
text = line.strip().split('\t')
devA.append(text[1])
devB.append(text[2])
devS.append(text[3])
with open(os.path.join(loc, 'SICK_test_annotated.txt'), 'rb') as f:
for line in f:
text = line.strip().split('\t')
testA.append(text[1])
testB.append(text[2])
testS.append(text[3])
trainS = [float(s) for s in trainS[1:]]
devS = [float(s) for s in devS[1:]]
testS = [float(s) for s in testS[1:]]
return [trainA[1:], trainB[1:]], [devA[1:], devB[1:]], [testA[1:], testB[1:]], [trainS, devS, testS]