-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdepgraph.py
882 lines (773 loc) · 38.1 KB
/
depgraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
from enum import Enum
import dslinstructions as di
import z3
class DepGraph() :
def __init__(self, inTempName = "tempName") :
self.vertices = []
self.tempNameCounter = 0
self.tempName = inTempName
def AddDslInstruction(self, inst, extVars) :
# Convert DSL instruction into dependency graph and add them.
self.AddDslInstructionHelper(inst, extVars)
def AddDslInstructionHelper(self, inst, extVars) :
if isinstance(inst, di.Variable): return self.CreateVertexVariable(inst, extVars)
elif isinstance(inst, di.Immediate) : return self.CreateVertexImmediate(inst, extVars)
elif isinstance(inst, di.FunctionCall) : return self.CreateVertexFuncCall(inst, extVars)
elif isinstance(inst, di.ArrayCall) : return self.CreateVertexArrayLoad(inst, extVars)
elif isinstance(inst, di.BinOperation) : return self.CreateVertexBinOp(inst, extVars)
elif isinstance(inst, di.Statement) :
if inst.comparator == "<-" : return self.CreateVertexArrayStore(inst, extVars)
elif inst.comparator == "=" :
if isinstance(inst.lhs, di.ArrayCall) : return self.CreateVertexArrayStore(inst, extVars)
else : return self.CreateVertexAssign(inst, extVars)
else : return self.CreateVertexCompare(inst, extVars)
elif isinstance(inst, di.Conditional) : return self.CreateVertexCond(inst, extVars)
elif isinstance(inst, di.UnOperation) : return self.CreateVertexUnOp(inst, extVars)
elif isinstance(inst, di.DataRegion) : return self.CreateVertexDataRegion(inst, extVars)
else : sys.exit("%s is not something I had in mind. DepGraph->AddDslInstructionHelper" % (inst))
def CreateVertexDataRegion(self, data, extVars) :
dataVertex = VertexNode()
dataVertex.operands = None
dataVertex.operator = VertexNode.OpCode.NONE
dataVertex.value = None
dataVertex.name = ""
dataVertex.index = 0
dataVertex.programOrigin = data.var.programOrigin
dataVertex.type = VertexNode.VertexType.DATAREGION
dataVertex.bitlength = 0
varVertex = self.AddDslInstructionHelper(data.var, extVars)
lowerVertex = self.AddDslInstructionHelper(data.lower, extVars)
upperVertex = self.AddDslInstructionHelper(data.upper, extVars)
dataVertex.operands = [varVertex, lowerVertex, upperVertex]
self.vertices.append(dataVertex)
return dataVertex
def CreateVertexVariable(self, var, extVars) :
# If vertex already exists, return the vertex.
varVertex = self.FindVertexWithName(var.name, var.ssaIndex, var.programOrigin)
if varVertex != None: return varVertex
# Otherwise, it might be in the list of external variables
varVertex = self.FindVertexWithNameFromList(var.name, var.ssaIndex, var.programOrigin, extVars)
# If you find it in extVars, use it, but also add it to the current vertices.
if varVertex != None :
self.vertices.insert(0, varVertex)
return varVertex
# Else, create a new VertexNode.
varVertex = VertexNode()
varVertex.operands = None
varVertex.operator = VertexNode.OpCode.NONE
varVertex.value = None
varVertex.name = var.name
varVertex.index = var.ssaIndex
varVertex.programOrigin = var.programOrigin
varVertex.type = VertexNode.VertexType.VAR
varVertex.bitlength = var.length
# If vertex does not exist, it must be an input.
self.vertices.insert(0, varVertex)
return varVertex
def CreateVertexImmediate(self, imm, extVars) :
# We will create a vertex for it, but it won't be added to any list
immVertex = VertexNode()
immVertex.operands = None
immVertex.operator = VertexNode.OpCode.NONE
immVertex.value = imm.value
immVertex.name = None
immVertex.index = None
immVertex.programOrigin = None
immVertex.type = VertexNode.VertexType.IMM
immVertex.bitlength = imm.length
return immVertex
def CreateVertexFuncCall(self, func, extVars) :
# Operands: Function name, args
# Create vertex node for the function name
fVertex = VertexNode()
fVertex.operands = None
fVertex.operator = VertexNode.OpCode.NONE
fVertex.value = None
fVertex.name = func.name
fVertex.index = None
fVertex.programOrigin = None
fVertex.type = VertexNode.VertexType.FUNC
fcOperands = [fVertex]
for a in func.args :
tempOperand = self.AddDslInstructionHelper(a, extVars)
fcOperands.append(tempOperand)
fcVertex = VertexNode()
fcVertex.operands = fcOperands
# Do not add fcVertex to the function name vertex user. Add fcVertex to the user of other
# operands.
for op in fcVertex.operands :
if op.users == None : op.users = []
op.users.append(fcVertex)
fcVertex.operator = VertexNode.OpCode.FUNCCALL
fcVertex.value = None
fcVertex.name = self.tempName
fcVertex.index = self.GetNextNameIndex()
fcVertex.programOrigin = None
fcVertex.type = VertexNode.VertexType.TEMP
if fVertex.name == "merge" :
# args: multiple bitvectors.
fcVertex.bitlength = 0
for op in fcVertex.operands[1:] :
fcVertex.bitlength = fcVertex.bitlength + op.bitlength
elif fVertex.name == "split" :
# args: (1) bitvector to split, (2) lower bound, (3) upper bound
assert(fcVertex.operands[2].type == VertexNode.VertexType.IMM and \
fcVertex.operands[3].type == VertexNode.VertexType.IMM)
fcVertex.bitlength = fcVertex.operands[3].value - fcVertex.operands[2].value + 1
elif fVertex.name == "zeroext" :
# args: (1) bitvector to extend, (2) length to extend
fcVertex.bitlength = fcVertex.operands[1].bitlength + fcVertex.operands[2].value
elif fVertex.name == "concat" :
# args: multiple bitvectors.
fcVertex.bitlength = 0
for op in fcVertex.operands[1:] :
fcVertex.bitlength = fcVertex.bitlength + op.bitlength
else : sys.exit("Unexpected built-in function name : " + fVertex.name)
self.vertices.insert(0, fcVertex)
return fcVertex
def CreateVertexArrayLoad(self, arrld, extVars) :
# Get the array vertex
aVertex = self.FindArrayWithName(arrld.name, arrld.ssaIndex, arrld.programOrigin)
if aVertex == None :
aVertex = self.FindVertexWithNameFromList(arrld.name, arrld.ssaIndex, arrld.programOrigin, extVars)
if aVertex != None :
self.vertices.insert(0, aVertex)
if aVertex == None :
aVertex = VertexNode()
aVertex.operands = None
aVertex.operator = VertexNode.OpCode.NONE
aVertex.value = None
aVertex.name = arrld.name
aVertex.index = arrld.ssaIndex
aVertex.programOrigin = arrld.programOrigin
aVertex.type = VertexNode.VertexType.ARR
assert(arrld.length != None)
aVertex.arrayElBitlength = arrld.length
self.vertices.insert(0, aVertex)
# Get the index vertex
tempIndex = self.AddDslInstructionHelper(arrld.index, extVars)
#Update aVertex's arrayIndexBitlength to fit the size of tempIndex
aVertex.arrayIndexBitlength = tempIndex.bitlength
# Create Array load vertex
acVertex = VertexNode()
acVertex.operands = [aVertex, tempIndex]
# Add acVertex to operands's users list
for op in acVertex.operands :
if op.users == None : op.users = []
op.users.append(acVertex)
acVertex.operator = VertexNode.OpCode.LOAD
acVertex.value = None
acVertex.name = self.tempName
acVertex.programOrigin = None
acVertex.index = self.GetNextNameIndex()
acVertex.type = VertexNode.VertexType.TEMP
assert(aVertex.arrayElBitlength != None)
acVertex.bitlength = aVertex.arrayElBitlength
self.vertices.insert(0, acVertex)
return acVertex
def CreateVertexBinOp(self, binop, extVars) :
# Get left hand side vertex
lhsVertex = self.AddDslInstructionHelper(binop.lhs, extVars)
# Get right hand side vertex
rhsVertex = self.AddDslInstructionHelper(binop.rhs, extVars)
assert(lhsVertex.bitlength == rhsVertex.bitlength)
# Create binary operation vertex
boVertex = VertexNode()
boVertex.operands = [lhsVertex, rhsVertex]
# Add acVertex to operands's users list
for op in boVertex.operands :
if op.users == None : op.users = []
op.users.append(boVertex)
boVertex.operator = VertexNode.OpCode.GetBinOpCode(binop.operator)
boVertex.value = None
boVertex.name = self.tempName
boVertex.index = self.GetNextNameIndex()
boVertex.programOrigin = None
boVertex.type = VertexNode.VertexType.TEMP
boVertex.bitlength = lhsVertex.bitlength
self.vertices.insert(0, boVertex)
return boVertex
def CreateVertexAssign(self, assign, extVars) :
# Get right hand side vertex
rhsVertex = self.AddDslInstructionHelper(assign.rhs, extVars)
# Create assignment vertex
aVertex = VertexNode()
aVertex.operands = [rhsVertex]
# Add aVertex to operands's users list
if rhsVertex.users == None : rhsVertex.users = []
rhsVertex.users.append(aVertex)
aVertex.operator = VertexNode.OpCode.ASSIGN
aVertex.value = None
aVertex.name = assign.lhs.name
aVertex.programOrigin = assign.lhs.programOrigin
aVertex.index = assign.lhs.ssaIndex
aVertex.type = VertexNode.VertexType.VAR
aVertex.bitlength = rhsVertex.bitlength
self.vertices.insert(0, aVertex)
return aVertex
def CreateVertexArrayStore(self, arrst, extVars) :
# Get array vertex to store the value into.
oaVertex = self.FindArrayWithName(arrst.lhs.name, arrst.lhs.oldSsaIndex, arrst.lhs.programOrigin)
if oaVertex == None :
oaVertex = self.FindVertexWithNameFromList(arrst.lhs.name, arrst.lhs.oldSsaIndex, \
arrst.lhs.programOrigin, extVars)
if oaVertex != None :
self.vertices.insert(0, oaVertex)
if oaVertex == None :
oaVertex = VertexNode()
oaVertex.operands = None
oaVertex.operator = VertexNode.OpCode.NONE
oaVertex.value = None
oaVertex.name = arrst.lhs.name
oaVertex.index = arrst.lhs.oldSsaIndex
oaVertex.programOrigin = arrst.lhs.programOrigin
oaVertex.type = VertexNode.VertexType.ARR
oaVertex.arrayElBitlength = arrst.lhs.length
self.vertices.insert(0, oaVertex)
# Get the index of the array
arrayIndexVertex = self.AddDslInstructionHelper(arrst.lhs.index, extVars)
# Update oaVertex's arrayIndexBitlength to fit arrayIndexVertex's size
oaVertex.arrayIndexBitlength = arrayIndexVertex.bitlength
# Get the value to store
valueToStoreVertex = self.AddDslInstructionHelper(arrst.rhs, extVars)
# Create the vertex for the newly created array
stVertex = VertexNode()
stVertex.operands = [oaVertex, arrayIndexVertex, valueToStoreVertex]
# Add stVertex to operands's users list
for op in stVertex.operands :
if op.users == None : op.users = []
op.users.append(stVertex)
stVertex.operator = VertexNode.OpCode.STORE
stVertex.value = None
stVertex.name = arrst.lhs.name
stVertex.index = arrst.lhs.ssaIndex
stVertex.programOrigin = arrst.lhs.programOrigin
stVertex.type = VertexNode.VertexType.ARR
stVertex.arrayElBitlength = oaVertex.arrayElBitlength
stVertex.arrayIndexBitlength = oaVertex.arrayIndexBitlength
self.vertices.insert(0, stVertex)
return stVertex
def CreateVertexCompare(self, comp, extVars) :
# Get the left hand side vertex
lhsVertex = self.AddDslInstructionHelper(comp.lhs, extVars)
# Get the right hand side vertex
rhsVertex = self.AddDslInstructionHelper(comp.rhs, extVars)
# Create the compare vertex
cVertex = VertexNode()
cVertex.operands = [lhsVertex, rhsVertex]
# Add aVertex to operands's users list
for op in cVertex.operands :
if op.users == None : op.users = []
op.users.append(cVertex)
cVertex.operator = VertexNode.OpCode.GetCompOpCode(comp.comparator)
cVertex.value = None
cVertex.name = self.tempName
cVertex.index = self.GetNextNameIndex()
cVertex.programOrigin = None
cVertex.type = VertexNode.VertexType.TEMP
cVertex.bitlength = -1 # Compare is a boolean. bitlength does not exist.
self.vertices.insert(0, cVertex)
return cVertex
def CreateVertexCond(self, cond, extVars) :
# Get the conditional statement vertex
condStmtVertex = self.AddDslInstructionHelper(cond.condStmt, extVars)
# Get the value for the true path
truePathVertex = self.AddDslInstructionHelper(cond.truePath, extVars)
# Get the value for the false path
falsePathVertex = self.AddDslInstructionHelper(cond.falsePath, extVars)
assert(truePathVertex.bitlength == falsePathVertex.bitlength)
# Create conditional assignment vertex
cVertex = VertexNode()
cVertex.operands = [condStmtVertex, truePathVertex, falsePathVertex]
# Add cVertex to operands's users list
for op in cVertex.operands :
if op.users == None : op.users = []
op.users.append(cVertex)
cVertex.operator = VertexNode.OpCode.CONDITIONAL
cVertex.value = None
cVertex.name = self.tempName
cVertex.index = self.GetNextNameIndex()
cVertex.programOrigin = None
cVertex.type = VertexNode.VertexType.TEMP
cVertex.bitlength = truePathVertex.bitlength
self.vertices.insert(0, cVertex)
return cVertex
def CreateVertexUnOp(self, unop, extVars) :
# Get the right hand side vertex
rhsVertex = self.AddDslInstructionHelper(unop.rhs, extVars)
# Create unary operation vertex
oVertex = VertexNode()
oVertex.operands = [rhsVertex]
# Add oVertex to operands's users list
if rhsVertex.users == None : rhsVertex.users = []
rhsVertex.users.append(oVertex)
oVertex.operator = VertexNode.OpCode.GetBinOpCode(unop.operator)
oVertex.value = None
oVertex.name = self.tempName
oVertex.index = self.GetNextNameIndex()
oVertex.programOrigin = None
oVertex.type = VertexNode.VertexType.TEMP
oVertex.bitlength = rhsVertex.bitlength
self.vertices.insert(0, oVertex)
return oVertex
def GetNextNameIndex(self) :
retValue = self.tempNameCounter
self.tempNameCounter = self.tempNameCounter + 1
return retValue
def FindVertexWithNameFromList(self, n, i, po, lst) :
for v in lst :
if v.name == n and v.index == i and v.programOrigin == po : return v
return None
def FindVertexWithName(self, n, i, po) :
for v in self.vertices :
if v.name == n and v.index == i and v.programOrigin == po: return v
return None
def FindArrayWithName(self, n, i, po) :
for a in [v for v in self.vertices if v.type == VertexNode.VertexType.ARR] :
if a.name == n and a.index == i and a.programOrigin == po: return a
return None
# Replace fr vertex with to vertex. This means all the users of fr will use to instead.
def ReplaceVertex(fr, to) :
# If replace "fr" node to "to" node,
# for ever user of "fr", for every operands of user, replace "fr" to "to"
if fr.users != None :
for user in fr.users :
user.operands = [to if op == fr else op for op in user.operands]
# the append user of "fr" to the list of user of "fr"
if to.users == None : to.users = fr.users
else : to.users = to.users + fr.users
# If "fr" is progOutput, then now "to" is progOutput
if "progOutput" in fr.metadata :
to.AddMetadata("progOutput", fr.RemoveMetadata("progOutput"))
class VertexNode() :
class VertexType(Enum) :
NONE = 1
VAR = 2
TEMP = 3
IMM = 4
ARR = 5
FUNC = 6
DATAREGION = 7
def IsConstant(t) :
return t == VertexNode.VertexType.IMM or \
t == VertexNode.VertexType.FUNC
def IsVarOrTemp(t) :
return t == VertexNode.VertexType.VAR or \
t == VertexNode.VertexType.TEMP
class OpCode(Enum) :
NONE = 0
PLUS = 1
MINUS = 2
AND = 3
OR = 4
XOR = 5
SHL = 6
SHR = 7
ROL = 8
ROR = 9
NOT = 10
FUNCCALL = 11
STORE = 12
LOAD = 13
CONDITIONAL = 14
ASSIGN = 15
MUL = 16
DIV = 17
EQ = 100
NE = 101
LT = 102
LE = 103
GT = 104
GE = 105
def IsComparison(oc) :
return oc in [VertexNode.OpCode.EQ, VertexNode.OpCode.NE, VertexNode.OpCode.LT, \
VertexNode.OpCode.LE, VertexNode.OpCode.GT, VertexNode.OpCode.GE]
def IsBinaryOp(oc) :
return oc in [VertexNode.OpCode.PLUS, VertexNode.OpCode.MINUS, VertexNode.OpCode.AND, \
VertexNode.OpCode.OR, VertexNode.OpCode.XOR, VertexNode.OpCode.SHL, \
VertexNode.OpCode.SHR, VertexNode.OpCode.ROL, VertexNode.OpCode.ROR, \
VertexNode.OpCode.MUL, VertexNode.OpCode.DIV]
def IsUnaryOp(oc) :
return oc in [VertexNode.OpCode.NOT]
def GetCompOpCode(s) :
if s == "==" : return VertexNode.OpCode.EQ
elif s == "!=" : return VertexNode.OpCode.NE
elif s == "<" : return VertexNode.OpCode.LT
elif s == "<=" : return VertexNode.OpCode.LE
elif s == ">" : return VertexNode.OpCode.GT
elif s == ">=" : return VertexNode.OpCode.GE
def GetBinOpCode(s) :
if s == "+" : return VertexNode.OpCode.PLUS
elif s == "-" : return VertexNode.OpCode.MINUS
elif s == "&" : return VertexNode.OpCode.AND
elif s == "|" : return VertexNode.OpCode.OR
elif s == "^" : return VertexNode.OpCode.XOR
elif s == "<<" : return VertexNode.OpCode.SHL
elif s == ">>" : return VertexNode.OpCode.SHR
elif s == "<<<" : return VertexNode.OpCode.ROL
elif s == ">>>" : return VertexNode.OpCode.ROR
elif s == "!" : return VertexNode.OpCode.NOT
elif s == "*" : return VertexNode.OpCode.MUL
elif s == "/" : return VertexNode.OpCode.DIV
def __init__(self) :
self.operands = None
self.users = None
self.operator = None
self.value = None
self.name = None
self.index = None
self.programOrigin = None
self.type = None
self.bitlength = None
self.arrayElBitlength = None
self.arrayIndexBitlength = None
self.topRank = None
self.equivClassId = None
self.metadata = {}
self.addtlConst = None
def AddMetadata(self, name, val) :
self.metadata[name] = val
return
def RemoveMetadata(self, name) :
return self.metadata.pop(name, None)
# Destroys ties between this vertex and its users/operands
def CutAllTies(self) :
# Remove link to its operands
if self.users != None :
for v in self.users :
v.RemoveOperand(self)
# Remove link to its users
if self.operands != None :
for v in self.operands :
v.RemoveUser(self)
# Clear out dictionary
self.metadata.clear()
def RemoveOperand(self, v) :
if self.operands == None : return
for i in range(0, len(self.operands)) :
if self.operands[i] == None : continue
if self.operands[i] == v : self.operands[i] == None
def RemoveUser(self, v) :
if self.users == None : return
if v in self.users : self.users.remove(v)
if self.users == [] : self.users = None
def ShallowCopy(self) :
nv = VertexNode()
nv.operator = self.operator
nv.value = self.value
nv.name = self.name
nv.index = self.index
nv.programOrigin = self.programOrigin
nv.type = self.type
nv.bitlength = self.bitlength
nv.arrayElBitlength = self.arrayElBitlength
nv.arrayIndexBitlength = self.arrayIndexBitlength
nv.topRank = self.topRank
nv.equivClassId = self.equivClassId
return nv
# ALWAYS caculates topological ranking. This means, if operands do not have topological ranking,
# it will recursively call CalculateTopRank on its operands.
def CalculateTopRank(self, reCalculate = False) :
if self.topRank != None and not reCalculate:
return self.topRank
if self.operands == None or self.operands == [] :
if VertexNode.VertexType.IsConstant(self.type) :
self.topRank = 0
else :
self.topRank = 1
return self.topRank
maxOperandTopRank = 0
for o in self.operands :
opTopRank = o.CalculateTopRank(reCalculate)
maxOperandTopRank = opTopRank if opTopRank > maxOperandTopRank else maxOperandTopRank
self.topRank = maxOperandTopRank + 1
return self.topRank
def __eq__(self, other) :
if other == None : return False
if self.type != other.type : return False
if self.type == VertexNode.VertexType.IMM : return self.value == other.value
return self.name == other.name and \
self.index == other.index and \
self.programOrigin == other.programOrigin
def __str__(self) :
if self.type == VertexNode.VertexType.IMM : return str(self.value)
s = ""
if self.programOrigin != None : s = s + self.programOrigin + "."
if self.name != None : s = s + self.name
if self.index != None : s = s + "." + str(self.index)
return s
def __hash__(self):
return hash((self.name, self.index, self.programOrigin, self.value, self.type, self.operator))
# Returns the name of the vertex in SMT form
def VertexNameToSmt(self) :
assert(self.type != VertexNode.VertexType.NONE and \
self.type != VertexNode.VertexType.FUNC)
if self.type == VertexNode.VertexType.VAR :
return z3.BitVec(self.__str__(), self.bitlength)
if self.type == VertexNode.VertexType.TEMP :
# is it a boolean?
if self.bitlength == -1 :
return z3.Bool(self.__str__())
return z3.BitVec(self.__str__(), self.bitlength)
if self.type == VertexNode.VertexType.IMM :
return z3.BitVecVal(self.value, self.bitlength)
if self.type == VertexNode.VertexType.ARR :
return z3.Array(self.__str__(), \
z3.BitVecSort(self.arrayIndexBitlength), \
z3.BitVecSort(self.arrayElBitlength))
def ComparisonToSmt(self) :
assert(VertexNode.OpCode.IsComparison(self.operator))
lhs = self.operands[0].VertexNameToSmt()
rhs = self.operands[1].VertexNameToSmt()
if self.operator == VertexNode.OpCode.GT :
return z3.UGT(lhs, rhs)
elif self.operator == VertexNode.OpCode.GE :
return z3.UGE(lhs, rhs)
elif self.operator == VertexNode.OpCode.LT :
return z3.ULT(lhs, rhs)
elif self.operator == VertexNode.OpCode.LE :
return z3.ULE(lhs, rhs)
elif self.operator == VertexNode.OpCode.EQ :
return (lhs == rhs)
elif self.operator == VertexNode.OpCode.NE :
return (lhs != rhs)
def VertexSubGraphToSmt(self) :
if self.type == VertexNode.VertexType.VAR :
# Might be an input
if self.operands == None : return self.VertexNameToSmt()
return self.operands[0].VertexSubGraphToSmt()
elif self.type == VertexNode.VertexType.TEMP :
# Possible Vertex : Function Call, Array Load, Binary Operation, Comparison,
# Conditional Assignment, Unary Operation
# function call: name = func_name(arguments)
# array load: name = array[index]
# binary operation: name = operand1 op operand2
# comparison: name = operand1 comp operand2
# conditional assignment: name = ite(operand1, operand2, operand3)
# unary operation: name = op operand1
# It's a function call
if self.operator == VertexNode.OpCode.FUNCCALL :
assert(self.operands[0].type == VertexNode.VertexType.FUNC)
# There are four possible functions that can last until now:
if self.operands[0].name == "merge" :
args = []
for op in self.operands[1:] :
args.append(op.VertexSubGraphToSmt())
return z3.Concat(args)
elif self.operands[0].name == "split" :
toSplit = self.operands[1].VertexSubGraphToSmt()
# Extract requires actual numerical value.
lowerBound = self.operands[2].value
upperBound = self.operands[3].value
return z3.Extract(upperBound, lowerBound, toSplit)
elif self.operands[0].name == "zeroext" :
toExtend = self.operands[1].VertexSubGraphToSmt()
# ZeroExt requires actual numerical value
n = self.operands[2].value
return z3.ZeroExt(n, toExtend)
elif self.operands[0].name == "concat" :
args = []
for op in self.operands[1:] :
args.append(op.VertexSubGraphToSmt())
return z3.Concat(args)
# It's an array load
elif self.operator == VertexNode.OpCode.LOAD :
array = self.operands[0].VertexSubGraphToSmt()
arrayIndex = self.operands[1].VertexSubGraphToSmt()
return z3.Select(array, arrayIndex)
# It's a conditional statement
elif self.operator == VertexNode.OpCode.CONDITIONAL :
cond = self.operands[0].VertexSubGraphToSmt()
truePath = self.operands[1].VertexSubGraphToSmt()
falsePath = self.operands[2].VertexSubGraphToSmt()
return z3.If(cond, truePath, falsePath)
# It's a comparison (x < y)
elif VertexNode.OpCode.IsComparison(self.operator) :
lhs = self.operands[0].VertexSubGraphToSmt()
rhs = self.operands[1].VertexSubGraphToSmt()
if self.operator == VertexNode.OpCode.GT :
return z3.UGT(lhs, rhs)
elif self.operator == VertexNode.OpCode.GE :
return z3.UGE(lhs, rhs)
elif self.operator == VertexNode.OpCode.LT :
return z3.ULT(lhs, rhs)
elif self.operator == VertexNode.OpCode.LE :
return z3.ULE(lhs, rhs)
elif self.operator == VertexNode.OpCode.EQ :
return (lhs == rhs)
elif self.operator == VertexNode.OpCode.NE :
return (lhs != rhs)
# It's a binary operation
elif VertexNode.OpCode.IsBinaryOp(self.operator) :
lhs = self.operands[0].VertexSubGraphToSmt()
rhs = self.operands[1].VertexSubGraphToSmt()
if self.operator == VertexNode.OpCode.PLUS :
return (lhs + rhs)
elif self.operator == VertexNode.OpCode.MINUS :
return (lhs - rhs)
elif self.operator == VertexNode.OpCode.AND :
return (lhs & rhs)
elif self.operator == VertexNode.OpCode.OR :
return (lhs | rhs)
elif self.operator == VertexNode.OpCode.XOR :
return (lhs ^ rhs)
elif self.operator == VertexNode.OpCode.SHL :
return (lhs << rhs)
elif self.operator == VertexNode.OpCode.SHR :
return (z3.LShR(lhs, rhs))
elif self.operator == VertexNode.OpCode.ROL :
return (z3.RotateLeft(lhs, rhs))
elif self.operator == VertexNode.OpCode.ROR :
return (z3.RotateRight(lhs, rhs))
elif self.operator == VertexNode.OpCode.MUL :
return (lhs * rhs)
elif self.operator == VertexNnode.OpCode.DIV :
return (lhs / rhs)
# It's a unary operation
elif VertexNode.OpCode.IsUnaryOp(self.operator) :
rhs = self.operands[0].VertexSubGraphToSmt()
if self.operator == VertexNode.OpCode.NOT :
return ~rhs
elif self.type == VertexNode.VertexType.IMM :
# Possible Vertex : Immediate Value
return self.VertexNameToSmt()
elif self.type == VertexNode.VertexType.ARR :
# Possible Vertex : Input array, array store
# input array: there is nothing to do
# array store: newarray = store(array, index, value)
# if operator == None, it's an "input" array
if self.operator == None : return self.VertexNameToSmt()
if self.operator == VertexNode.OpCode.NONE : return self.VertexNameToSmt()
# Otherwise, it must be an array store operation vertex
assert(self.operator == VertexNode.OpCode.STORE)
oldArray = self.operands[0].VertexSubGraphToSmt()
index = self.operands[1].VertexSubGraphToSmt()
value = self.operands[2].VertexSubGraphToSmt()
return z3.Store(oldArray, index, value)
elif self.type == VertexNode.VertexType.FUNC :
# Possible Vertex : Name of the function
return self.VertexNameToSmt()
# returns the instruction of the vertex in SMT formula.
def VertexOperationToSmt(self) :
assert(self.type != VertexNode.VertexType.NONE)
if self.type == VertexNode.VertexType.VAR :
# Possible Vertex : input Variable, name = operand1
# input variable: there is nothing to do.
# assigned Variable: name = operands[0]
# It's an input variable if there is no operand :
if self.operands == None : return None
# otherwise, it's an assigned variable, but make sure just in case
assert(self.operator == VertexNode.OpCode.ASSIGN)
return self.VertexNameToSmt() == self.operands[0].VertexNameToSmt()
elif self.type == VertexNode.VertexType.TEMP :
# Possible Vertex : Function Call, Array Load, Binary Operation, Comparison,
# Conditional Assignment, Unary Operation
# function call: name = func_name(arguments)
# array load: name = array[index]
# binary operation: name = operand1 op operand2
# comparison: name = operand1 comp operand2
# conditional assignment: name = ite(operand1, operand2, operand3)
# unary operation: name = op operand1
# It's a function call
if self.operator == VertexNode.OpCode.FUNCCALL :
assert(self.operands[0].type == VertexNode.VertexType.FUNC)
# There are four possible functions that can last until now:
if self.operands[0].name == "merge" :
args = []
for op in self.operands[1:] :
args.append(op.VertexNameToSmt())
return self.VertexNameToSmt() == z3.Concat(args)
elif self.operands[0].name == "split" :
toSplit = self.operands[1].VertexNameToSmt()
# Extract requires actual numerical value.
lowerBound = self.operands[2].value
upperBound = self.operands[3].value
return self.VertexNameToSmt() == z3.Extract(upperBound, lowerBound, toSplit)
elif self.operands[0].name == "zeroext" :
toExtend = self.operands[1].VertexNameToSmt()
# ZeroExt requires actual numerical value
n = self.operands[2].value
return self.VertexNameToSmt() == z3.ZeroExt(n, toExtend)
elif self.operands[0].name == "concat" :
args = []
for op in self.operands[1:] :
args.append(op.VertexNameToSmt())
return self.VertexNameToSmt() == z3.Concat(args)
# It's an array load
elif self.operator == VertexNode.OpCode.LOAD :
array = self.operands[0].VertexNameToSmt()
arrayIndex = self.operands[1].VertexNameToSmt()
return self.VertexNameToSmt() == z3.Select(array, arrayIndex)
# It's a conditional statement
elif self.operator == VertexNode.OpCode.CONDITIONAL :
cond = self.operands[0].VertexNameToSmt()
truePath = self.operands[1].VertexNameToSmt()
falsePath = self.operands[2].VertexNameToSmt()
return self.VertexNameToSmt() == z3.If(cond, truePath, falsePath)
# It's a comparison (x < y)
elif VertexNode.OpCode.IsComparison(self.operator) :
lhs = self.operands[0].VertexNameToSmt()
rhs = self.operands[1].VertexNameToSmt()
if self.operator == VertexNode.OpCode.GT :
return self.VertexNameToSmt() == z3.UGT(lhs, rhs)
elif self.operator == VertexNode.OpCode.GE :
return self.VertexNameToSmt() == z3.UGE(lhs, rhs)
elif self.operator == VertexNode.OpCode.LT :
return self.VertexNameToSmt() == z3.ULT(lhs, rhs)
elif self.operator == VertexNode.OpCode.LE :
return self.VertexNameToSmt() == z3.ULE(lhs, rhs)
elif self.operator == VertexNode.OpCode.EQ :
return self.VertexNameToSmt() == (lhs == rhs)
elif self.operator == VertexNode.OpCode.NE :
return self.VertexNameToSmt() == (lhs != rhs)
# It's a binary operation
elif VertexNode.OpCode.IsBinaryOp(self.operator) :
lhs = self.operands[0].VertexNameToSmt()
rhs = self.operands[1].VertexNameToSmt()
if self.operator == VertexNode.OpCode.PLUS :
return self.VertexNameToSmt() == (lhs + rhs)
elif self.operator == VertexNode.OpCode.MINUS :
return self.VertexNameToSmt() == (lhs - rhs)
elif self.operator == VertexNode.OpCode.AND :
return self.VertexNameToSmt() == (lhs & rhs)
elif self.operator == VertexNode.OpCode.OR :
return self.VertexNameToSmt() == (lhs | rhs)
elif self.operator == VertexNode.OpCode.XOR :
return self.VertexNameToSmt() == (lhs ^ rhs)
elif self.operator == VertexNode.OpCode.SHL :
return self.VertexNameToSmt() == (lhs << rhs)
elif self.operator == VertexNode.OpCode.SHR :
return self.VertexNameToSmt() == (z3.LShR(lhs, rhs))
elif self.operator == VertexNode.OpCode.ROL :
return self.VertexNameToSmt() == (z3.RotateLeft(lhs, rhs))
elif self.operator == VertexNode.OpCode.ROR :
return self.VertexNameToSmt() == (z3.RotateRight(lhs, rhs))
elif self.operator == VertexNode.OpCode.MUL :
return self.VertexNameToSmt() == (lhs * rhs)
elif self.operator == VertexNnode.OpCode.DIV :
return self.VertexNameToSmt() == (lhs / rhs)
# It's a unary operation
elif VertexNode.OpCode.IsUnaryOp(self.operator) :
rhs = self.operands[0].VertexNameToSmt()
if self.operator == VertexNode.OpCode.NOT :
return self.VertexNameToSmt() == ~rhs
elif self.type == VertexNode.VertexType.IMM :
# Possible Vertex : Immediate Value
return None
elif self.type == VertexNode.VertexType.ARR :
# Possible Vertex : Input array, array store
# input array: there is nothing to do
# array store: newarray = store(array, index, value)
# if operator == None, it's an "input" array
if self.operator == None : return None
if self.operator == VertexNode.OpCode.NONE : return None
# Otherwise, it must be an array store operation vertex
assert(self.operator == VertexNode.OpCode.STORE)
oldArray = self.operands[0].VertexNameToSmt()
index = self.operands[1].VertexNameToSmt()
value = self.operands[2].VertexNameToSmt()
newArray = self.VertexNameToSmt()
return newArray == z3.Store(oldArray, index, value)
elif self.type == VertexNode.VertexType.FUNC :
# Possible Vertex : Name of the function
return None