Skip to content

Latest commit

 

History

History
220 lines (134 loc) · 3.85 KB

README.md

File metadata and controls

220 lines (134 loc) · 3.85 KB

DuAlgorithm

My personal collection of algorithms, data structures, and design patterns in C++, Python, and more.

Algorithm

Dynamic Programming

Knapsack problem

  • f[j] = f[j] || f[j-v[i]]
  • f[i][j] = max(f[i-1]j-v[i]] + w[i], f[i-1][j])
  • f[i,j] = f[i-1,j-a[i]] or f[i-1,j+a[i]]
Knapsack on a Tree
  • f[i,j] = max(f[i,j], f[l,j-v[i]-v[fb[i]]-v[fa[i]]]+v[i]*p[i]+v[fb[i]]*p[fb[i]]+v[fa[i]]*p[fa[i]])

LIS: Longest Increasing Subsequence

  • f[i] = max{ f[j] } + 1, a[j] < a[i], f[i] ascending, lower_bound

LCS: Longest Common Subsequence

  • f[i] = max{f[j] + 1}
  • f[i] = min{{f(i-k)} (not stone[i]) {f(i-k)} + 1} (stone[i]);

Edit Distance

  • f[i][j] = min(min(f[i-1][j], f[i][j-1]), f[i-1][j - 1]) + 1;

Stock problem

  • buy[i] = max(rest[i-1] - price, buy[i-1])
  • sell[i] = max(buy[i-1] + price, sell[i-1])
  • rest[i] = max(sell[i-1], buy[i-1], rest[i-1])

Math

Counting Problems

  • uniquePath: C(m+n-2, max(m-1, n-1))
  • maxRegionsByALine: n * (n + 1) / 2 + 1
  • maxRegionsByAPolyLine: (n - 1)_(2 _ n - 1) + 2 * n
  • countTrianglesOfPolygon: C(2 * n - 2, n - 1)

Mods Theory

  • GCD: Greatest Common Divisor; Extended: gcd(a, b) = a _ x + b _ y
  • LCM: Lowest Common Multiple
  • Modular exponentiation: (a ^ b) % n
  • Modular multiplication (x * y) % n
  • mod equation solver: a * x = b % n
  • Chinese remainder theorem

Number Theory

Primes

  • Miller¨CRabin primality test
  • Euler's totient function
  • Count primes

Permutations

Random

  • Shuffle: scan and swap a[i] with a[random(i, n - 1)].

Probability

Shuffle
  • Time: O(N), scan and swap a[i] with a[random(i,n-1)].
Basic
  • Random variables, union, joint distribution, conditional probabilities, chain rule, marginalization, Baye's Rule
  • P(A|B) = P(B|A) * P(A) / P(B)
  • P(AB) = P(A|B)P(B)
  • P(ABC) = P(A,B | C) P(C) = P(A|BC)P(BC) = P(A|BC) P(B|C) P(C)
  • rand(0,1): unifiorm
  • Y~ uniform (0,1)
  • X = Y_1 .. Y_n i.i.d. ~ Gaussian(0,1)
  • X = rand(0,1) + rand(0,1) + rand(0,1) + rand(0,1) + rand(0,1)......(100000 times)

Sampling

  • Compute the CDF of the 1D distribution
  • Derive the inverse of the CDF
  • Map a random variable through the inverse from the previous step.

Graph Theory

Shortest Path

  • Dijkstra: O(E + V log V), heap for pending vertices.
  • Bellman Ford: O(VE)
  • Kruskal: O(E log V)
  • Prim: O(E + V log V) Fibonacci heap and adjacency list

Network Flow

  • Graham, BFS for sparse biparate graph ** O(VE)
  • Hopcroft-Carp ** O(V^0.5 E)
  • Kuhn Munkras ** O(VE^2)
  • Max Flow = Min Cut = minimum set to remove for cutting the graph ** O(N^3)
  • Dinic ** O(V^2 E)
  • HLPP ** O(V^3)
  • MinCostMaxFlow ** SPFA << O(VEf)
SPFA

Greedy

  • Heap

Linear

RMQ: Range Minimum/Maximum Query

LCA(T, u, V) = E[RMQ(d, r[u], r[v])], (r[u] < r[v])

RSQ: Range Sum Query

String

KMP

  • O(n + m)

RabinKarp

  • Avereage: O(N), Worst: O(MN)

Sorts

QuickSort

  • When N < 16, use insersion sort, since the data is mostly sorted
  • When depth > T, use heap sort
  • Time: O(N log N)

MergeSort

  • Time: O(N log N)

BubbleSort

BucketSort

Search

BFS

  • Queue

DFS

  • Stack

Binary Search

  • lower_bound, greater or equal to

Data Structure

Linear

Interval

  • Sort and merge
Sweeping line

Linked List

  • Reverse (between): Use a dummy pointer
  • Deep copy: Copy one after one

Queue

Dequeue
  • Sliding window
  • Moving average

Stacks

  • Calculator

Cluster

Union Set

  • Time: O(alpha), typically alpha < 4

Design Patterns

Sinleton

  • multithreading safe singleton
  • a static instance member pointing to its self
  • all other members are ensured singleton
  • garbage collection when destroyed

Factory

  • create and recycle objects

Abstract Factory

  • virtual factories for creating products