-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscript.fsx
330 lines (291 loc) · 11.6 KB
/
script.fsx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
(* drop out *)
open System.IO;
open System.Text.RegularExpressions;
/// Matrix Transpose.
let transpose xss =
let rec f xss acc =
match xss with
| [] -> failwith "xss must not contain empty vectors."
| hd::_ ->
match hd with
| [] -> List.rev acc
| _ ->
f <| List.map (List.skip 1) xss <| (List.map List.head xss)::acc
f xss List.empty
///Operation of two Vectors.
let vecOp f xs ys =
match xs, ys with
| [], [] -> []
| [], hd::tl -> ys
| a::b, [] -> xs
| a::b, c::d -> List.map2 f xs ys
/// The Dot Product of xs and ys.
let dot xs ys = List.map2 (*) xs ys |> List.sum
let square x = x * x
let distance xs ys =
(List.map2 (-) xs ys)
|> List.map square
|> List.average
|> sqrt
|> (*) 0.5
/// Euclid Norm.
let rec norm xs =
let rec f xs acc =
match xs with
| [] -> List.sum acc |> sqrt
| hd::tl -> f tl ((square hd)::acc)
f xs List.empty
///Shuffle List (Fisher Yates Alogrithm).
let shuffle xs =
let f (rand: System.Random) (xs:List<'a>) =
let rec shuffleTo (indexes: int[]) upTo =
match upTo with
| 0 -> indexes
| _ ->
let fst = rand.Next(upTo)
let temp = indexes.[fst]
indexes.[fst] <- indexes.[upTo]
indexes.[upTo] <- temp
shuffleTo indexes (upTo - 1)
let length = xs.Length
let indexes = [| 0 .. length - 1 |]
let shuffled = shuffleTo indexes (length - 1)
List.permute (fun i -> shuffled.[i]) xs
f (System.Random()) xs
/// Retrieves the value of data on a list given the list of index.
let dataAtIndex xs_data xs_index =
let rec f data_xs index_xs acc =
match index_xs with
| [] -> List.rev acc
| hd::tl -> (f data_xs tl ((List.item hd data_xs)::acc))
f xs_data xs_index List.empty
/// Maps a scalar to a vector using a mapper function.
let scalarToVecOp mapper x ys = List.map (mapper x) ys
/// Maps the elements the first list (xs) to second list (ys) using the mapper function.
/// first, it gets the first element of first list (xs) and maps to second list (ys)
/// using the mapper function. i.e. (List.map (mapper x) ys).
/// Finally it returns the accumulated mapped list.
/// mapToSecondList (+) ["1"; "2"; "3"] ["2"; "3", "4"] =
/// [ ["12"; "13"; "14"]; ["22"; "23"; "24"]; ["32"; "33"; "34"] ].
let mapToSecondList mapper xs ys =
let rec f mapper xs ys acc = match xs with | [] -> List.rev acc | hd::tl -> f mapper tl ys <| (List.map (mapper hd) ys)::acc
f mapper xs ys List.empty
/// Scalar Vector Multiplication.
let smul c xs = List.map ((*) c) xs
/// Vector Multiplication.
let mul xs ys = List.map2 (*) xs ys
/// Vector Addition.
let add xs ys = List.map2 (+) xs ys
/// Logistic Sigmoid.
let logSigmoid x = (/) 1.0 ((+) 1.0 (exp -x))
/// Derivative of Logistic Sigmoid.
let deltaLogSigmoid x = (*) x ((-) 1.0 x)
/// Derivative of TanH i.e. sec^2h.
let deltaTanH x = (/) 1.0 <| (*) (cosh x) (cosh x)
/// Generate List of Random Elements.
let listRandElems count =
let rec f (rand:System.Random) acc c = match c with | 0 -> acc | _ -> f rand <| rand.NextDouble()::acc <| (-) c 1
f (System.Random()) List.empty count
/// Gradient. dFunc is the derivative of forward squashing function.
let gradient dFunc output target = (*) <| dFunc output <| (-) target output
/// Weighted Sum with Bias.
let weightedSum inputs weights bias = add bias <| List.map (dot inputs) weights
/// Delta or The Rate of Change.
let deltas learningRate gradients netOutputs = List.map <| smul learningRate <| mapToSecondList (*) gradients netOutputs
/// Represents a Network Layer.
type Layer = {
Inputs: List<float>
Weights: List<List<float>>
Bias: List<float>
Gradients: List<float>
PrevDeltas: List<List<float>>
BiasPrevDeltas: List<float>
NetOutputs: List<float>
}
/// Represents a Feed Forward Network.
type Network = {
LearningRate: float
Momentum: float
Inputs: List<float>
FirstHiddenLayer : Layer
SecondHiddenLayer : Layer
OutputLayer : Layer
TargetOutputs: List<float>
}
let feedForward net =
let firstHiddenWeightedSum = weightedSum net.Inputs net.FirstHiddenLayer.Weights net.FirstHiddenLayer.Bias
let firstHiddenNetOutputs = List.map tanh firstHiddenWeightedSum
let secondHiddenWeightedSum = weightedSum firstHiddenNetOutputs net.SecondHiddenLayer.Weights net.SecondHiddenLayer.Bias
let secondHiddenNetOutputs = List.map tanh secondHiddenWeightedSum
let outputWeightedSum = weightedSum secondHiddenNetOutputs net.OutputLayer.Weights net.OutputLayer.Bias
let outputs = List.map tanh outputWeightedSum
{
net with
FirstHiddenLayer = {
net.FirstHiddenLayer with
Inputs = net.Inputs
NetOutputs = firstHiddenNetOutputs
}
SecondHiddenLayer = {
net.SecondHiddenLayer with
Inputs = firstHiddenNetOutputs
NetOutputs = secondHiddenNetOutputs
}
OutputLayer = {
net.OutputLayer with
Inputs = secondHiddenNetOutputs
NetOutputs = outputs
}
}
let bpOutputLayer n m tOutputs (layer:Layer) =
let grads = List.map2 (gradient deltaTanH) layer.NetOutputs tOutputs
let bpDeltas = deltas n grads layer.Inputs
let prevDeltasWithM = List.map (smul m) layer.PrevDeltas
let newDeltas = List.map2 add bpDeltas prevDeltasWithM
let weightsUpdate= List.map2 add layer.Weights newDeltas
let biasDeltas = smul n grads
let biasPrevDeltasWithM = smul m layer.BiasPrevDeltas
let biasNewDeltas = add biasDeltas biasPrevDeltasWithM
let biasUpdate = add layer.Bias biasNewDeltas
{
layer with
Weights = weightsUpdate
Bias = biasUpdate
Gradients = grads
PrevDeltas = newDeltas
BiasPrevDeltas = biasNewDeltas
}
let bpHiddenLayer n m layer nextLayer =
let grads = mul (List.map deltaTanH layer.NetOutputs) (List.map (dot nextLayer.Gradients) (transpose nextLayer.Weights))
let bpDeltas = deltas n grads layer.Inputs
let prevDeltasWithM = List.map (smul m) layer.PrevDeltas
let newDeltas = List.map2 add bpDeltas prevDeltasWithM
let weightsUpdate = List.map2 add layer.Weights newDeltas
let biasDeltas = smul n grads
let biasPrevDeltasWithM = smul m layer.BiasPrevDeltas
let biasNewDeltas = add biasDeltas biasPrevDeltasWithM
let biasUpdate = add layer.Bias biasNewDeltas
{
layer with
Weights = weightsUpdate
Bias = biasUpdate
Gradients = grads
PrevDeltas = newDeltas
BiasPrevDeltas = biasNewDeltas
}
let backPropagate (net:Network) =
let bpOutputLayer = bpOutputLayer net.LearningRate net.Momentum net.TargetOutputs net.OutputLayer
let bpHidLayerWithHyperParams = bpHiddenLayer net.LearningRate net.Momentum
let bpSecHidLayer = bpHidLayerWithHyperParams net.SecondHiddenLayer bpOutputLayer
let bpFirstHidLayer = bpHidLayerWithHyperParams net.FirstHiddenLayer bpSecHidLayer
{
net with
OutputLayer = bpOutputLayer
SecondHiddenLayer = bpSecHidLayer
FirstHiddenLayer = bpFirstHidLayer
}
(* Utility functions. *)
let splitToIO net = List.splitAt net.Inputs.Length
let validate net data =
let inputs, targets = splitToIO net data
{ net with Inputs = inputs; TargetOutputs = targets } |> feedForward
/// Train Neural Net with epoch, kfold size, network and the data.
let rec train epoch kfold netAcc data_xs =
let trainOnce net data =
let inputs, targets = splitToIO net data
{ net with Inputs = inputs; TargetOutputs = targets } |> feedForward |> backPropagate
let networkDistance network = distance network.TargetOutputs network.OutputLayer.NetOutputs
let log path data = File.AppendAllText(path, data)
let logToDataFile filename =
let fullfilepath = @"C:\Users\Arya\Desktop\breast-cancer-cell\dat\"+filename
log fullfilepath
let errors trainedRms validatedRms = trainedRms + "," + validatedRms + "\n"
let vectorToString (vector:List<float>) =
let concatCommaSep (x:float) s = x.ToString("F6") + "," + s
List.foldBack concatCommaSep vector ""
let rec matrixToString (matrix:List<List<float>>) =
let concatStringVector vector s = vectorToString vector + ";" + s
List.foldBack concatStringVector matrix ""
match epoch with
| 0 -> netAcc
| _ ->
let shuffledData_xs = shuffle data_xs
let trainSet, testSet = List.splitAt kfold shuffledData_xs
let trained = List.fold trainOnce netAcc trainSet
let trainedRms = networkDistance trained
let validated = List.fold validate netAcc testSet
let validatedRms = networkDistance validated
if epoch % 100 = 0 then
printfn "%f %f" trainedRms validatedRms
(* write error *)
logToDataFile "errors.dat" <| errors (trainedRms.ToString()) (validatedRms.ToString())
(* write appropriate parameters. -h1,h2,output weights and biases. *)
let logNetworkParameters =
(netAcc.FirstHiddenLayer.Weights |> matrixToString) + "," +
(netAcc.FirstHiddenLayer.Bias |> vectorToString) + "," +
(netAcc.SecondHiddenLayer.Weights |> matrixToString) + "," +
(netAcc.SecondHiddenLayer.Bias |> vectorToString) + "," +
(netAcc.OutputLayer.Weights |> matrixToString) + "," +
(netAcc.OutputLayer.Bias |> vectorToString) + "\n"
logToDataFile "weightsAndBiases.dat" <| logNetworkParameters
train ((-) epoch 1) kfold trained shuffledData_xs
let inputSize = 9;
let hiddenSize = 8;
let outputSize = 2;
let network = {
LearningRate = 0.001
Momentum = 0.5
Inputs = List.replicate inputSize 0.0
FirstHiddenLayer = {
Inputs = List.empty
Weights = ((*) inputSize hiddenSize) |> listRandElems |> List.chunkBySize inputSize
Bias = listRandElems hiddenSize
Gradients = List.empty
PrevDeltas = List.replicate hiddenSize <| List.replicate inputSize 0.0
BiasPrevDeltas = List.replicate hiddenSize 0.0
NetOutputs = List.empty
}
SecondHiddenLayer = {
Inputs = List.empty
Weights = ((*) hiddenSize hiddenSize) |> listRandElems |> List.chunkBySize hiddenSize
Bias = listRandElems hiddenSize
Gradients = List.empty
PrevDeltas = List.replicate hiddenSize <| List.replicate hiddenSize 0.0
BiasPrevDeltas = List.replicate hiddenSize 0.0
NetOutputs = List.empty
}
OutputLayer = {
Inputs = List.empty
Weights = ((*) hiddenSize outputSize) |> listRandElems |> List.chunkBySize hiddenSize
Bias = listRandElems outputSize
Gradients = List.empty
PrevDeltas = List.replicate outputSize <| List.replicate hiddenSize 0.0
BiasPrevDeltas = List.replicate outputSize 0.0
NetOutputs = List.empty
}
TargetOutputs = List.replicate outputSize 0.0
}
let dataToFloatList separator data = Regex.Split(data, separator) |> Array.map float |> Array.toList
let csvStrToFloatList = dataToFloatList ","
let loadData filename = (* replace with your current directory. *)
File.ReadAllLines(@"C:\Users\Arya\Desktop\breast-cancer-cell\dataset\"+filename)
|> Array.toList
|> List.map csvStrToFloatList
let allData = loadData "data.csv"
let epoch = 1000
let kfold = 10
printfn "Training..."
let trainedNet = train epoch kfold network allData
let computeAccuracy network xss =
let g size xs n =
let isCorrect xs ys = if xs = ys then 1 else 0
let heaveside x = if x <= 0.0 then -1.0 else 1.0
let squeeze xs = List.map heaveside xs
let inputs, targets = List.splitAt size xs
let netOutputs = (validate network inputs).OutputLayer.NetOutputs
let squeezed = squeeze netOutputs
(isCorrect squeezed targets) + n
let correctItems = List.foldBack (g network.Inputs.Length) xss 0
(float correctItems) / (float xss.Length)
printfn "Testing Model Accuracy: Crunching All Data..."
let accuracy = computeAccuracy trainedNet allData