-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
executable file
·316 lines (269 loc) · 9.42 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
##
# This file is part of N.O.D.A.C.
#
# (c) Copyright 2009 N.O.D.A.C. Development Team
#
# N.O.D.A.C. is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as published
# by the Free Software Foundation; either version 3 of the License,
# or (at your option) any later version.
#
# N.O.D.A.C. is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# Please refer to the GNU Public License for more details.
#
# You should have received a copy of the GNU Public License along with
# this program; if not, write to:
# Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
##
import array
import random
from re import *
from xml.dom import minidom
activation_types = ('linear', 'tanh', 'sigmoid')
config_version = 0
dataset_version = 0
class NeuralNetwork:
def __init__(self): # Initialize the network
self.__ready = False # Flag for ready-to-run network
# Filled by "TO BE REPLACED" functions
self.__sets = []
self.__epochs = []
self.__mode = 0 # default: train
# Filled by new() or readconfig()
self.__layers = []
self.__weights = []
def new(self, layers, wgen = 0): # New network from scratch
self.__layers = layers
for layer in self.__layers:
if not layer.has_key('activation'):
# make 'linear' standard value, if not specified
layer['activation'] = 'linear'
if not layer.has_key('neurons'):
print "Error: no neurons number specified"
exit()
print self.__layers
self.__firstlayer = self.__layers[0]['neurons']
self.__lastlayer = self.__layers[-1]['neurons']
# Fill weights list
nsyn = self.syncalc(self.__layers)
for i in range(nsyn):
if wgen == 0: # Weights generation type: 0 = random
self.__weights.append(random.random())
else:
self.__weights.append(wgen)
self.__ready = True
def set_activation(self, nlayer, act_type): # Set layer activation type
if act_type in activation_types:
self.__layers[nlayer]['activation'] = act_type
print "Layer", nlayer, "activation changed to:", act_type
else:
print "Error: unknown activation type:", act_type
exit()
def set_mode(self, mode): # Set running mode - 0 is 'train', 1 is 'test'
if mode == 0 or mode == 1:
self.__mode = mode
print "Network mode changed to:", mode
else:
print "Error: invalid mode:", mode
exit()
def set_epochs(self, set, epochs): # Set training epochs for a given set
if epochs > 0 and epochs < 4294967295:
self.__epochs[set] = epochs
print "Epochs for set", set, "changed to", epochs
else:
print "Error: epochs should be between 0 and 65000"
exit()
def add_set(self): # Adds an empty set
self.__sets.append([])
self.__epochs.append(1000) # default for new sets is 1000
def add_entry(self, setn, inputs, outputs): # Adds a input/output pair in set setn
if len(self.__sets) <= setn:
print "Error: invalid set number:", setn
exit()
self.__sets[setn].append([inputs, outputs])
def read_dataset(self, xmlfile): # Read datasets from XML
tempsets = []
tempepochs = []
isok = True # flag for correctness
currentset = 0
dataset = minidom.parse(xmlfile).documentElement
if int(dataset.getElementsByTagName('version')[0].firstChild.data) \
== dataset_version:
print "Dataset version and program version match..."
for set in dataset.getElementsByTagName('set'):
tempsets.append([])
setepochs = set.getElementsByTagName('epochs')
if not setepochs:
tempepochs.append(1000)
else:
tempepochs.append(int(setepochs[0].firstChild.data.\
encode('UTF-8')))
for case in set.getElementsByTagName('case'):
inputs = []
outputs = []
for i in case.getElementsByTagName('i'):
inputs.append(i.firstChild.data.encode('UTF-8'))
for o in case.getElementsByTagName('o'):
outputs.append(o.firstChild.data.encode('UTF-8'))
tempsets[currentset].append([inputs, outputs])
# At this point I should already have
# the network structure...
if len(inputs) != self.__firstlayer or \
len(outputs) != self.__lastlayer:
isok = False
print \
"Error: I/O elements doesn't match layers size"
currentset += 1
print tempsets
print tempepochs
if isok:
print "Updating sets..."
self.__sets = tempsets
print "Updating epochs..."
self.__epochs = tempepochs
else:
print "One or more errors in dataset"
def syncalc(self, layers): # Returns synapses number
syn = 0
for i in range(len(layers)-1): # synapses number
syn += layers[i]['neurons'] * layers[i+1]['neurons']
return syn
def write_config(self, xmlfile): # write a XML configuration file
if self.__ready == False: # Network state check
print "Why should I save an empty network?"
return
fp = open(xmlfile, "w")
fp.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
fp.write("<config>\n")
fp.write("\t<version>" + str(config_version) + "</version>\n")
for layer in self.__layers:
fp.write("\t<layer>\n")
fp.write("\t\t<size>" + str(layer['neurons']) + "</size>\n")
fp.write("\t\t<activation>" + str(layer['activation']) + \
"</activation>\n")
fp.write("\t</layer>\n")
fp.write("\t<weights>\n")
for w in self.__weights:
fp.write("\t\t<w>" + str(w) + "</w>\n")
fp.write("\t</weights>\n")
fp.write("</config>")
fp.close()
def read_config(self, xmlfile): # read a XML configuration file
templayers = []
isok = True # flag for correctness
config = minidom.parse(xmlfile).documentElement
if int(config.getElementsByTagName('version')[0].firstChild.data) \
== config_version:
print "Config version and program version match..."
nlayer = 0
# Layer informations
for layer in config.getElementsByTagName('layer'):
templayers.append({})
if len(layer.getElementsByTagName('size')) != 0:
templayers[nlayer]['neurons'] = \
int(layer.getElementsByTagName('size')[0].firstChild.data.encode('UTF-8'))
else:
print "Error in config file: missing layer size."
isok = False
if len(layer.getElementsByTagName('activation')) != 0:
templayers[nlayer]['activation'] = \
layer.getElementsByTagName('activation')[0].\
firstChild.data.encode('UTF-8')
else:
print "Setting default activation for layer", nlayer
templayers[nlayer]['activation'] = \
'linear' # default
nlayer += 1
# Weights informations
tempweights = []
nweight = 0
synapses = self.syncalc(templayers)
print "Synapses number:", synapses
# Get weights
for w in config.getElementsByTagName('w'):
tempweights.append(1)
tempweights[nweight] = float\
(w.firstChild.data.encode('UTF-8'))
nweight = nweight + 1
if len(tempweights) != synapses:
print "Error: Weights number doesn't match synapses number"
isok = False
print "Temporary weights list:"
print tempweights
print "Temporary layer list:"
print templayers
if isok:
print "Updating layers..."
self.__layers = templayers
self.__firstlayer = self.__layers[0]['neurons']
self.__lastlayer = self.__layers[-1]['neurons']
print "Updating weights..."
self.__weights = tempweights
self.__ready = True
else:
print "One or more errors in config file."
def make_landscape(self, N=0.5, M=0.1): # Run network
for i in range(len(self.__layers)):
print "Layer", i, "-"
print " Neurons:", self.__layers[i]['neurons']
print " Activation function:", self.__layers[i]['activation']
print "Writing config file for", len(self.__sets),"sets..."
self.__fp = open("landscape.nod", "wb")
# HEADER section
# header int values
self.__header = array.array('I')
self.__header.append(config_version)
self.__header.append(len(self.__layers)-1)
for layer in self.__layers:
self.__header.append(layer['neurons'])
for i in range(len(activation_types)):
if activation_types[i] == layer['activation']:
self.__header.append(i)
print "INT part of header (layers, neurons number, act. functions, ...):"
print self.__header
# header weights values
self.__headerw = array.array('f')
for w in self.__weights:
self.__headerw.append(w)
print "DUMP part of header:"
print self.__headerw
# operating mode
self.__opmode = array.array('I')
self.__opmode.append(self.__mode)
print "OPERATING MODE:"
print self.__opmode
# header float values
self.__headerfl = array.array('f')
self.__headerfl.append(N)
self.__headerfl.append(M)
print "FLOAT part of header (learning rate, momentum):"
print self.__headerfl
# sets number
self.__setsarr = array.array('I')
self.__setsarr.append(len(self.__sets))
print "SETS number:", self.__setsarr
# print header to file
self.__header.tofile(self.__fp)
self.__headerw.tofile(self.__fp)
self.__opmode.tofile(self.__fp)
self.__headerfl.tofile(self.__fp)
self.__setsarr.tofile(self.__fp)
# DATA section
print "DATA:"
n = 0
for set in self.__sets:
self.__miniheader = array.array('I')
self.__numarray = array.array('f')
self.__miniheader.append(self.__epochs[self.__sets.index(set)])
self.__miniheader.append(len(set))
for case in set:
for io in case:
for num in io:
self.__numarray.append(float(num))
self.__miniheader.tofile(self.__fp)
self.__numarray.tofile(self.__fp)
print self.__miniheader
print self.__numarray
self.__fp.close()