diff --git a/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py b/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py new file mode 100644 index 000000000..1b199e7a2 --- /dev/null +++ b/model_compression_toolkit/core/pytorch/graph_substitutions/substitutions/matmul_decomposition.py @@ -0,0 +1,499 @@ +# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +import operator +from typing import List + +import numpy as np +import torch + +from model_compression_toolkit.core.common.graph.base_graph import OutTensor +from model_compression_toolkit.core.common.graph.graph_matchers import NodeOperationMatcher +from model_compression_toolkit.core.common import BaseNode, Graph, BaseSubstitution +from model_compression_toolkit.core.common.graph.functional_node import FunctionalNode +from model_compression_toolkit.core.pytorch.constants import * +from model_compression_toolkit.logger import Logger + + +class MatMulParams: + """ + A data class to hold all relevant parameter shapes and nodes for MatMul decomposition. + """ + + def __init__(self, + matmul_node: FunctionalNode): + """ + Extract params for all the substitution nodes from original matmul node. + Args: + matmul_node: original MatMul Node + + Naming convention: + * First parameter - input + * Second parameter - other + """ + self.head_input_node, self.head_other_node = None, None + self.prev_input_node, self.prev_other_node = None, None + + self.input_shape, self.other_shape = matmul_node.input_shape + + # Step 1 - Expand + expand_shape = np.max(np.vstack((self.input_shape[1:-2], self.other_shape[1:-2])), axis=0).tolist() + self.input_expand_shape = tuple([-1] + expand_shape + list(self.input_shape[-2:])) + self.other_expand_shape = tuple([-1] + expand_shape + list(self.other_shape[-2:])) + + # Step 2 - Reshape + # (B, D_1, ... , D_N, m, p) --> (B, (D_1*...*D_N), m, p) + self.input_reshape_shape = [ + -1, + int(np.prod(self.input_expand_shape[1:-2])), + self.input_expand_shape[-2], + self.input_expand_shape[-1] + ] + # (B, D_1, ... , D_N, p, n) --> (B, (D_1*...*D_N), p, n) + self.other_reshape_shape = [ + -1, + int(np.prod(self.other_expand_shape[1:-2])), + self.other_expand_shape[-2], + self.other_expand_shape[-1] + ] + + # Step 3 - Split + # (B, (D_1*...*D_N), m, p) --> [(B, m, p)] * (D_1*...*D_N) + self.input_matmul_shape = [-1] + self.input_reshape_shape[-2:] + self.input_split_shape = tuple([self.input_matmul_shape] * self.input_reshape_shape[1]) + # (B, (D_1*...*D_N), p, n) --> [(B, p, n)] * (D_1*...*D_N) + self.other_matmul_shape = [-1] + self.other_reshape_shape[-2:] + self.other_split_shape = tuple([self.other_matmul_shape] * self.other_reshape_shape[1]) + + # Step 4 - Matmul loop + # [(B, m, p)] * (D_1*...*D_N) X [(B, p, n)] * (D_1*...*D_N) --> [(B, m, n)] * (D_1*...*D_N) + self.single_matmul_shape = self.input_matmul_shape[:-1] + [self.other_matmul_shape[-1]] + + # Step 5 - Stack and Reshape all matmul outputs to original dimensions + # [(B, m, n)] * (D_1*...*D_N) --> (B, (D_1*...*D_N), m, n) + self.matmul_stack_shape = tuple([-1] + [self.input_reshape_shape[1]] + self.single_matmul_shape[1:]) + # (B, (D_1*...*D_N), m, n) --> (B, D_1, ..., D_N, m, n) + self.output_shape = tuple(list(self.input_expand_shape)[:-1] + [self.matmul_stack_shape[-1]]) + + def update_nodes(self, + input_node: FunctionalNode, + other_node: FunctionalNode): + """ + Updates the head and prev nodes to support the option of skipping unnecessary operations. + Args: + input_node: node that operates on the input branch + other_node: node that operates on the other branch + """ + if not self.head_input_node: + self.head_input_node = input_node + if not self.head_other_node: + self.head_other_node = other_node + self.prev_input_node = input_node + self.prev_other_node = other_node + + +class MatMulDecomposition(BaseSubstitution): + """ + Removes A MatMul node from the graph if one of its inputs has >3 dimensions and replaces it with unbind, matmul + and stack nodes. Substitution is done inplace. + + Naming convention: + * First parameter - input + * Second parameter - other + """ + + def __init__(self): + """ + Matches: torch matmul or matmul operator. + """ + func_node = NodeOperationMatcher(torch.matmul) | NodeOperationMatcher(operator.matmul) + super().__init__(matcher_instance=func_node) + + def substitute(self, + graph: Graph, + matmul_node: FunctionalNode) -> Graph: + """ + Decompose matmul of matrices with >3 dimensions to multiple matmuls and reconstruct graph. + Args: + graph: Graph we apply the substitution on. + matmul_node: MatMul node to substitute + Returns: + A graph after applying the substitution. + """ + + # If both matrices are already 3D or less, no need to change the graph + if len(matmul_node.input_shape[0]) <= 3 and len(matmul_node.input_shape[1]) <= 3: + return graph + + if len(matmul_node.input_shape[0]) != len(matmul_node.input_shape[1]): + Logger.critical(f'Mismatch between number of input dimensions in node {matmul_node.name}.') + + matmul_params = MatMulParams(matmul_node) + + # Expand inputs to equal dimensions (instead of broadcasting) - if needed + if not np.array_equal(matmul_params.input_shape[1:-2], matmul_params.other_shape[1:-2]): + input_expand_node, other_expand_node = self._expand_inputs( + graph, + matmul_node, + matmul_params + ) + matmul_params.update_nodes(input_node=input_expand_node, other_node=other_expand_node) + + # Reshape inputs - if needed + # (B, D_1, ... , D_N, m, p) --> (B, (D_1*...*D_N), m, p) + # (B, D_1, ... , D_N, p, n) --> (B, (D_1*...*D_N), p, n) + if len(matmul_params.input_shape) > 4: # both input & other have the same number of dimensions + input_reshape_node, other_reshape_node = self._reshape_input( + graph, + matmul_node, + matmul_params + ) + matmul_params.update_nodes(input_node=input_reshape_node, other_node=other_reshape_node) + + # Split inputs + # (B, (D_1*...*D_N), m, p) --> [(B, m, p)] * (D_1*...*D_N) + # (B, (D_1*...*D_N), p, n) --> [(B, p, n)] * (D_1*...*D_N) + input_split_node, other_split_node = self._split_inputs( + graph, + matmul_node, + matmul_params + ) + matmul_params.update_nodes(input_node=input_split_node, other_node=other_split_node) + + # Matmul each pair + # [(B, m, p)] * (D_1*...*D_N) X [(B, p, n)] * (D_1*...*D_N) --> [(B, m, n)] * (D_1*...*D_N) + split_matmul_nodes = [] + for idx in range(matmul_params.input_reshape_shape[1]): + split_matmul_node = self._calc_single_matmul( + graph, + matmul_node, + input_split_node, + other_split_node, + idx, + matmul_params + ) + split_matmul_nodes.append(split_matmul_node) + + # Stack and reshape all results - reshape if needed + # [(B, m, n)] * (D_1*...*D_N) --> (B, (D_1*...*D_N), m, n) + # (B, (D_1*...*D_N), m, n) --> (B, D_1, ..., D_N, m, n) + output_node = self._stack_matmul_outputs( + graph, + matmul_node, + split_matmul_nodes, + matmul_params + ) + + # connect edges to new nodes + self._connect_to_graph( + graph, + matmul_node, + matmul_params.head_input_node, + matmul_params.head_other_node, + output_node + ) + + # remove the original matmul node + graph.remove_node(matmul_node, new_graph_outputs=[OutTensor(output_node, 0)]) + + return graph + + @staticmethod + def _expand_inputs(graph: Graph, + matmul_node: FunctionalNode, + params: MatMulParams) -> List[FunctionalNode]: + """ + This method creates the nodes that expand the inputs such that the dimensions fit the MatMul process. + + Args: + graph: Graph to apply the substitution on. + matmul_node: MatMul node. + params: MatMul shape params. + + Returns: + Input & Other expand nodes. + """ + if params.input_shape[1:] != list(params.input_expand_shape[1:]): + input_expand_node = FunctionalNode( + name=f'{matmul_node.name}_input_expand', + framework_attr={}, + input_shape=params.input_shape, + output_shape=params.input_expand_shape, + weights={}, + layer_class=torch.broadcast_to, + op_call_args=[params.input_expand_shape], + op_call_kwargs={}, + functional_op=torch.broadcast_to + ) + graph.add_node(input_expand_node) + else: + input_expand_node = None + + if params.other_shape[1:] != list(params.other_expand_shape[1:]): + other_expand_node = FunctionalNode( + name=f'{matmul_node.name}_other_expand', + framework_attr={}, + input_shape=params.other_shape, + output_shape=params.other_expand_shape, + weights={}, + layer_class=torch.broadcast_to, + op_call_args=[params.other_expand_shape], + op_call_kwargs={}, + functional_op=torch.broadcast_to + ) + graph.add_node(other_expand_node) + else: + other_expand_node = None + + return [input_expand_node, other_expand_node] + + @staticmethod + def _reshape_input(graph: Graph, + matmul_node: FunctionalNode, + params: MatMulParams) -> List[FunctionalNode]: + """ + This method creates the nodes that reshape the input nodes to be 4D before the split. + + Args: + graph: Graph to apply the substitution on. + matmul_node: MatMul node. + params: MatMul shape params. + + Returns: + Input & Other reshape nodes. + """ + input_reshape_node = FunctionalNode( + name=f'{matmul_node.name}_input_reshape', + framework_attr={}, + input_shape=params.input_expand_shape, + output_shape=params.input_reshape_shape, + weights={}, + layer_class=torch.reshape, + op_call_args=[params.input_reshape_shape], + op_call_kwargs={}, + functional_op=torch.reshape + ) + other_reshape_node = FunctionalNode( + name=f'{matmul_node.name}_other_reshape', + framework_attr={}, + input_shape=params.other_expand_shape, + output_shape=params.other_reshape_shape, + weights={}, + layer_class=torch.reshape, + op_call_args=[params.other_reshape_shape], + op_call_kwargs={}, + functional_op=torch.reshape + ) + # Add reshapes to graph + if params.prev_input_node: + graph.add_node_with_in_edges(input_reshape_node, [params.prev_input_node]) + else: + graph.add_node(input_reshape_node) + + if params.prev_other_node: + graph.add_node_with_in_edges(other_reshape_node, [params.prev_other_node]) + else: + graph.add_node(other_reshape_node) + + return [input_reshape_node, other_reshape_node] + + @staticmethod + def _split_inputs(graph: Graph, + matmul_node: FunctionalNode, + params: MatMulParams) -> List[FunctionalNode]: + """ + This method creates the nodes that split the parameters from 4D to 3D for single MatMul operations. + + Args: + graph: Graph to apply the substitution on. + matmul_node: MatMul node. + params: MatMul shape params. + + Returns: + Input & Other unbind nodes - output of each is list of 3D matrices + """ + input_split_node = FunctionalNode( + name=f'{matmul_node.name}_input_split', + framework_attr={}, + input_shape=params.input_reshape_shape, + output_shape=params.input_split_shape, + weights={}, + layer_class=torch.unbind, + op_call_args=[1], + op_call_kwargs={}, + functional_op=torch.unbind + ) + + other_split_node = FunctionalNode( + name=f'{matmul_node.name}_other_split', + framework_attr={}, + input_shape=params.other_reshape_shape, + output_shape=params.other_split_shape, + weights={}, + layer_class=torch.unbind, + op_call_args=[1], + op_call_kwargs={}, + functional_op=torch.unbind + ) + + if params.prev_input_node: + graph.add_node_with_in_edges(input_split_node, [params.prev_input_node]) + else: + graph.add_node(input_split_node) + if params.prev_other_node: + graph.add_node_with_in_edges(other_split_node, [params.prev_other_node]) + else: + graph.add_node(other_split_node) + + return [input_split_node, other_split_node] + + @staticmethod + def _calc_single_matmul(graph: Graph, + matmul_node: FunctionalNode, + input_split_node: FunctionalNode, + other_split_node: FunctionalNode, + dim_index: int, + params: MatMulParams) -> FunctionalNode: + """ + This method creates the per channel (index) matmul. + Retrieves the matrices from index dim_index and multiplies them. + + Args: + graph: Graph to apply the substitution on. + matmul_node: Original Matmul node + input_split_node: input after reshape and split. + other_split_node: other after reshape and split. + dim_index: index to run matmul on + params: MatMul Params + + Returns: + Node after matmul of single dimension + """ + # (B, m, n) X (B, n, p) -> (B, m, p) + # Get the input in index dim_index + get_input_node = FunctionalNode( + name=f'{matmul_node.name}_input_{dim_index}', + framework_attr={}, + input_shape=params.input_split_shape, + output_shape=params.input_matmul_shape, + weights={}, + layer_class=operator.getitem, + op_call_args=[dim_index], + op_call_kwargs={}, + functional_op=operator.getitem + ) + graph.add_node_with_in_edges(get_input_node, [input_split_node], [dim_index]) + # Get the other in index dim_index + get_other_node = FunctionalNode( + name=f'{matmul_node.name}_other_{dim_index}', + framework_attr={}, + input_shape=params.other_split_shape, + output_shape=params.other_matmul_shape, + weights={}, + layer_class=operator.getitem, + op_call_args=[dim_index], + op_call_kwargs={}, + functional_op=operator.getitem + ) + graph.add_node_with_in_edges(get_other_node, [other_split_node], [dim_index]) + + matmul_node = FunctionalNode(name=f'{matmul_node.name}_matmul_{dim_index}', + framework_attr={}, + input_shape=(params.input_matmul_shape, params.other_matmul_shape), + output_shape=[params.single_matmul_shape], + weights={}, + layer_class=torch.matmul, + op_call_args=[], + op_call_kwargs={}, + functional_op=torch.matmul) + graph.add_node_with_in_edges(matmul_node, [get_input_node, get_other_node]) + + return matmul_node + + @staticmethod + def _stack_matmul_outputs(graph: Graph, + matmul_node: FunctionalNode, + split_matmul_nodes: List[FunctionalNode], + params: MatMulParams) -> FunctionalNode: + """ + This method creates the node that concats all single matmuls together and then reshapes to the original output + shape. + + Args: + graph: Graph to apply the substitution on. + matmul_node: Original Matmul node + split_matmul_nodes: list of all single matmul nodes. + params: MatMul Params + + Returns: + Node after reshape - final output + """ + # [(B, m, n)] * (D_1*...*D_N) --> (B, (D_1*...*D_N), m, n) + cat_node = FunctionalNode( + name=f'{matmul_node.name}_stack', + framework_attr={DIM: 1}, + input_shape=[params.single_matmul_shape] * params.matmul_stack_shape[1], + output_shape=params.matmul_stack_shape, + weights={}, + layer_class=torch.stack, + op_call_args=[], + op_call_kwargs={DIM: 1}, + functional_op=torch.stack, + inputs_as_list=True + ) + graph.add_node_with_in_edges(cat_node, split_matmul_nodes) + + if params.matmul_stack_shape != params.output_shape: + # (B, (D_1 * ... * D_N), m, n) --> (B, D_1, ..., D_N, m, n) + matmul_reshape_node = FunctionalNode( + name=f'{matmul_node.name}_reshape', + framework_attr={}, + input_shape=params.matmul_stack_shape, + output_shape=params.output_shape, + weights={}, + layer_class=torch.reshape, + op_call_args=[params.output_shape], + op_call_kwargs={}, + functional_op=torch.reshape + ) + graph.add_node_with_in_edges(matmul_reshape_node, [cat_node]) + + return matmul_reshape_node if params.matmul_stack_shape != params.output_shape else cat_node + + @staticmethod + def _connect_to_graph( + graph: Graph, + matmul_node: FunctionalNode, + head_input_node: FunctionalNode, + head_other_node: FunctionalNode, + output_node: FunctionalNode): + """ + Connect the subgraph to the input graph. + Args: + graph: input graph + matmul_node: MatMul node to substitute inputs and outputs with + head_input_node: 1st input to MatMul Node + head_other_node: 2nd input to MatMul Node + output_node: output node of decomposed MatMul. + """ + input_in_edge, other_in_edge = graph.in_edges(matmul_node) + if graph.get_edge_data(*input_in_edge, 0).get('sink_index') == 0: + graph.add_edge(input_in_edge[0], head_input_node, **graph.get_edge_data(*input_in_edge, 0)) + graph.add_edge(other_in_edge[0], head_other_node, **graph.get_edge_data(*other_in_edge, 0)) + else: + graph.add_edge(input_in_edge[0], head_other_node, **graph.get_edge_data(*input_in_edge, 0)) + graph.add_edge(other_in_edge[0], head_input_node, **graph.get_edge_data(*other_in_edge, 0)) + graph.remove_edge(input_in_edge[0], matmul_node) + graph.remove_edge(other_in_edge[0], matmul_node) + graph.reconnect_out_edges(current_node=matmul_node, new_node=output_node) diff --git a/model_compression_toolkit/core/pytorch/pytorch_implementation.py b/model_compression_toolkit/core/pytorch/pytorch_implementation.py index 80bd37c43..afb25e14d 100644 --- a/model_compression_toolkit/core/pytorch/pytorch_implementation.py +++ b/model_compression_toolkit/core/pytorch/pytorch_implementation.py @@ -52,6 +52,8 @@ FunctionalLayerNorm from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.functional_linear import \ FunctionalLinear +from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.matmul_decomposition import \ + MatMulDecomposition from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.linear_collapsing import \ pytorch_linear_collapsing from model_compression_toolkit.core.pytorch.graph_substitutions.substitutions.multi_head_attention_decomposition \ @@ -264,6 +266,7 @@ def get_substitutions_prepare_graph(self, fw_info: FrameworkInfo = None) -> List return [ReshapeWithStaticShapes(), MultiHeadAttentionDecomposition(), ScaledDotProductDecomposition(), + MatMulDecomposition(), TransformFunctionCallMethod(), FunctionalConvSubstitution(fw_info), FunctionalBatchNorm(), diff --git a/tests/pytorch_tests/model_tests/feature_models/matmul_test.py b/tests/pytorch_tests/model_tests/feature_models/matmul_test.py new file mode 100644 index 000000000..c457a9319 --- /dev/null +++ b/tests/pytorch_tests/model_tests/feature_models/matmul_test.py @@ -0,0 +1,94 @@ +# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== +import torch +from tests.pytorch_tests.model_tests.base_pytorch_test import BasePytorchTest +from model_compression_toolkit.target_platform_capabilities.tpc_models.imx500_tpc.latest import generate_pytorch_tpc +from tests.common_tests.helpers.generate_test_tp_model import generate_test_tp_model + +""" +This test checks the MatMul substitution function. +""" + + +class MatMulFNet(torch.nn.Module): + """ + Model for testing MatMul function + """ + def __init__(self): + super(MatMulFNet, self).__init__() + + def forward(self, x, y): + out = torch.matmul(x, y) + return out + + +class MatMulOpNet(MatMulFNet): + """ + Model for testing MatMul operator + """ + def forward(self, x, y): + out = x @ y + return out + + +class MatMulNetBaseTest(BasePytorchTest): + """ + Base test for testing MatMul decomposition + """ + def __init__(self, unit_test, input_shape, other_shape): + super().__init__(unit_test) + self.input_shape = input_shape + self.other_shape = other_shape + self.use_is_close_validation = True # There is a small difference between float operations + + def create_inputs_shape(self): + return [self.input_shape, self.other_shape] + + def get_tpc(self): + return { + 'no_quantization': generate_pytorch_tpc( + name="no_quant_pytorch_test", + tp_model=generate_test_tp_model( + { + 'weights_n_bits': 32, + 'activation_n_bits': 32, + 'enable_weights_quantization': False, + 'enable_activation_quantization': False + } + ) + ) + } + + +class MatMulFNetTest(MatMulNetBaseTest): + """ + This test uses the MatMul function + """ + def __init__(self, unit_test, input_shape, other_shape): + super().__init__(unit_test, input_shape, other_shape) + + def create_feature_network(self, input_shape): + return MatMulFNet() + + +class MatMulOpNetTest(MatMulNetBaseTest): + """ + This test uses the MatMul operator - @ + """ + def __init__(self, unit_test, input_shape, other_shape): + super().__init__(unit_test, input_shape, other_shape) + + def create_feature_network(self, input_shape): + return MatMulOpNet() diff --git a/tests/pytorch_tests/model_tests/test_feature_models_runner.py b/tests/pytorch_tests/model_tests/test_feature_models_runner.py index 53e7cfd97..531eac80b 100644 --- a/tests/pytorch_tests/model_tests/test_feature_models_runner.py +++ b/tests/pytorch_tests/model_tests/test_feature_models_runner.py @@ -60,6 +60,7 @@ LUTActivationQuantizerTest from tests.pytorch_tests.model_tests.feature_models.manual_bit_selection import ManualBitWidthByLayerTypeTest, \ ManualBitWidthByLayerNameTest, Manual16BitTest, Manual16BitTestMixedPrecisionTest +from tests.pytorch_tests.model_tests.feature_models.matmul_test import MatMulFNetTest, MatMulOpNetTest from tests.pytorch_tests.model_tests.feature_models.metadata_test import MetadataTest from tests.pytorch_tests.model_tests.feature_models.mixed_precision_activation_test import \ MixedPrecisionActivationSearch8Bit, MixedPrecisionActivationSearch2Bit, MixedPrecisionActivationSearch4Bit, \ @@ -246,6 +247,25 @@ def test_linear_function(self): """ LinearFNetTest(self).run_test() + def test_matmul_function(self): + """ + This test checks the MatMul substitution function + """ + MatMulFNetTest(self, [3, 5, 10], [3, 10, 8]).run_test() + MatMulOpNetTest(self, [3, 5, 10], [3, 10, 8]).run_test() + MatMulFNetTest(self, [3, 2, 5, 10], [3, 2, 10, 20]).run_test() + MatMulOpNetTest(self, [3, 2, 5, 10], [3, 2, 10, 20]).run_test() + MatMulFNetTest(self, [50, 2, 400, 32], [50, 1, 32, 80]).run_test() + MatMulOpNetTest(self, [50, 2, 400, 32], [50, 1, 32, 80]).run_test() + MatMulFNetTest(self, [3, 1, 5, 10], [3, 8, 10, 3]).run_test() + MatMulOpNetTest(self, [3, 1, 5, 10], [3, 8, 10, 3]).run_test() + MatMulFNetTest(self, [3, 1, 4, 5, 10], [3, 8, 1, 10, 10]).run_test() + MatMulOpNetTest(self, [3, 1, 4, 5, 10], [3, 8, 1, 10, 10]).run_test() + MatMulFNetTest(self, [3, 10, 6, 5, 50, 100], [3, 10, 1, 1, 100, 80]).run_test() + MatMulOpNetTest(self, [3, 10, 6, 5, 50, 100], [3, 10, 1, 1, 100, 80]).run_test() + MatMulFNetTest(self, [3, 1, 7, 1, 50, 100], [3, 10, 7, 5, 100, 80]).run_test() + MatMulOpNetTest(self, [3, 1, 7, 1, 50, 100], [3, 10, 7, 5, 100, 80]).run_test() + def test_broken_net(self): """ This test checks that the "broken" node (node without output) is being