forked from quic/aimet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchannel_pruning.py
295 lines (241 loc) · 13.3 KB
/
channel_pruning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# =============================================================================
#
# @@-COPYRIGHT-START-@@
#
# Copyright (c) 2021, Qualcomm Innovation Center, Inc. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# SPDX-License-Identifier: BSD-3-Clause
#
# @@-COPYRIGHT-END-@@
#
# =============================================================================
"""
This file demonstrates the use of compression using AIMET channel pruning
technique followed by fine tuning.
"""
import argparse
import logging
import os
from datetime import datetime
from decimal import Decimal
from typing import Tuple
from torchvision import models
import torch
import torch.utils.data as torch_data
# imports for AIMET
import aimet_common.defs
import aimet_torch.defs
from aimet_torch.compress import ModelCompressor
# imports for data pipelines
from Examples.common import image_net_config
from Examples.torch.utils.image_net_data_loader import ImageNetDataLoader
from Examples.torch.utils.image_net_evaluator import ImageNetEvaluator
from Examples.torch.utils.image_net_trainer import ImageNetTrainer
logger = logging.getLogger('TorchChannelPruning')
formatter = logging.Formatter('%(asctime)s : %(name)s - %(levelname)s - %(message)s')
logging.basicConfig(format=formatter)
###
# This script utilize AIMET to perform channel pruning compression (0.5% ratio) on a resnet18
# pretrained model with the ImageNet data set. This is intended as a working example to show
# how AIMET APIs can be invoked.
# Scenario parameters:
# - AIMET channel pruning compression scheme using auto mode
# - Ignored model.conv1
# - Target compression ratio: 0.5
# - Number of compression ration candidates: 10
# - Input shape: [1, 3, 224, 224]
# - Learning rate: 0.001
# - Learning rate schedule: [5,10]
#
class ImageNetDataPipeline:
"""
Provides APIs for model compression using AIMET weight SVD, evaluation and finetuning.
"""
def __init__(self, _config: argparse.Namespace):
"""
:param _config:
"""
self._config = _config
def evaluate(self, model: torch.nn.Module, iterations: int = None, use_cuda: bool = False) -> float:
"""
Evaluate the specified model using the specified number of samples from the validation set.
AIMET's compress_model() expects the function with this signature to its eval_callback
parameter.
:param model: The model to be evaluated.
:param iterations: The number of batches of the dataset.
:param use_cuda: If True then use a GPU for inference.
:return: The accuracy for the sample with the maximum accuracy.
"""
# your code goes here instead of the example from below
evaluator = ImageNetEvaluator(self._config.dataset_dir, image_size=image_net_config.dataset['image_size'],
batch_size=image_net_config.evaluation['batch_size'],
num_workers=image_net_config.evaluation['num_workers'])
return evaluator.evaluate(model, iterations, use_cuda)
def finetune(self, model: torch.nn.Module):
"""
Finetunes the model. The implemtation provided here is just an example,
provide your own implementation if needed.
:param model: The model to finetune.
:return: None
"""
# Your code goes here instead of the example from below
trainer = ImageNetTrainer(self._config.dataset_dir, image_size=image_net_config.dataset['image_size'],
batch_size=image_net_config.train['batch_size'],
num_workers=image_net_config.train['num_workers'])
trainer.train(model, max_epochs=self._config.epochs, learning_rate=self._config.learning_rate,
learning_rate_schedule=self._config.learning_rate_schedule, use_cuda=self._config.use_cuda)
torch.save(model, os.path.join(self._config.logdir, 'finetuned_model.pth'))
def aimet_channel_pruning(model: torch.nn.Module, evaluator: aimet_common.defs.EvalFunction,
data_loader: torch_data.DataLoader) -> Tuple[torch.nn.Module, aimet_common.defs.CompressionStats]:
"""
Compresses the model using AIMET's channel pruning feature
:param model: The model to compress
:param evaluator: Evaluator used during compression
:param dataloader: DataLoader used during compression
:return: A tuple of compressed model and its statistics
"""
# Configure the greedy comp-ratio selection algorithm
greedy_params = aimet_torch.defs.GreedySelectionParameters(target_comp_ratio=Decimal(0.5),
num_comp_ratio_candidates=10)
# Configure the auto mode compression. Ignore the first layer of the model (model.conv1).
auto_params = aimet_torch.defs.ChannelPruningParameters.AutoModeParams(greedy_params,
modules_to_ignore=[model.conv1])
# Configure the parameters for channel pruning compression
# 50000 reconstruction samples will give better results and is recommended; however we use 5000 here as an example.
params = aimet_torch.defs.ChannelPruningParameters(data_loader=data_loader,
num_reconstruction_samples=5000,
allow_custom_downsample_ops=False,
mode=aimet_torch.defs.ChannelPruningParameters.Mode.auto,
params=auto_params)
scheme = aimet_common.defs.CompressionScheme.channel_pruning # spatial_svd, weight_svd or channel_pruning
metric = aimet_common.defs.CostMetric.mac # mac or memory
results = ModelCompressor.compress_model(model=model,
eval_callback=evaluator,
eval_iterations=10,
input_shape=(1, 3, 224, 224),
compress_scheme=scheme,
cost_metric=metric,
parameters=params)
return results
def channel_pruning_example(config: argparse.Namespace):
"""
1. Instantiate Data Pipeline for evaluation and training
2. Load the pretrained resnet18 model
3. Calculate floating point accuracy
4. Compression
4.1. Compress the model using AIMET Channel Pruning
4.2. Log the statistics
4.3. Save the compressed model
4.4. Calculate and log the accuracy of compressed model
5. Finetuning
5.1 Finetune the compressed model
5.2 Calculate and log the accuracy of compressed-finetuned model
:param config: This argparse.Namespace config expects following parameters:
dataset_dir: Path to a directory containing ImageNet dataset.
This folder should conatin at least 2 subfolders:
'train': for training dataset and 'val': for validation dataset.
use_cuda: A boolean var to indicate to run the test on GPU.
logdir: Path to a directory for logging.
epochs: Number of epochs (type int) for finetuning.
learning_rate: A float type learning rate for model finetuning
learning_rate_schedule: A list of epoch indices for learning rate schedule used in finetuning. Check
https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#MultiStepLR
for more details.
"""
# Instantiate Data Pipeline for evaluation and training
data_pipeline = ImageNetDataPipeline(config)
# Load the pretrained resnet18 model
model = models.resnet18(pretrained=True)
if config.use_cuda:
model.to(torch.device('cuda'))
model.eval()
# Calculate floating point accuracy
accuracy = data_pipeline.evaluate(model, use_cuda=config.use_cuda)
logger.info("Original Model top-1 accuracy = %.2f", accuracy)
logger.info("Starting Channel Pruning")
# Compress the model using AIMET Channel Pruning
# in auto mode, AIMET uses the Greedy Compression-Ratio Selection algorithm
data_loader = ImageNetDataLoader(is_training=True, images_dir=_config.dataset_dir, image_size=224).data_loader
compressed_model, stats = aimet_channel_pruning(model=model, evaluator=data_pipeline.evaluate,
data_loader=data_loader)
logger.info(stats)
with open(os.path.join(config.logdir, 'log.txt'), "w") as outfile:
outfile.write("%s\n\n" % (stats))
# Calculate and log the accuracy of compressed model
accuracy = data_pipeline.evaluate(compressed_model, use_cuda=config.use_cuda)
logger.info("After Channel Pruning, top-1 accuracy = %.2f", accuracy)
logger.info("Model Channel Pruning Complete")
# Finetune the compressed model
logger.info("Starting Model Finetuning")
data_pipeline.finetune(compressed_model)
# Calculate and log the accuracy of compressed-finetuned model
accuracy = data_pipeline.evaluate(compressed_model, use_cuda=config.use_cuda)
logger.info("Finetuned Compressed Model top-1 accuracy = %.2f", accuracy)
logger.info("Model Finetuning Complete")
# Save the compressed model
torch.save(compressed_model, os.path.join(config.logdir, 'compressed_model.pth'))
if __name__ == '__main__':
default_logdir = os.path.join("benchmark_output",
"channel_prunning_" + datetime.now().strftime("%Y-%m-%d-%H-%M-%S"))
parser = argparse.ArgumentParser(
description='Apply Channel Pruning on pretrained ResNet18 model and finetune it for ImageNet dataset')
parser.add_argument('--dataset_dir', type=str,
required=True,
help="Path to a directory containing ImageNet dataset.\n\
This folder should conatin at least 2 subfolders:\n\
'train': for training dataset and 'val': for validation dataset")
parser.add_argument('--use_cuda', action='store_true',
required=True,
help='Add this flag to run the test on GPU.')
parser.add_argument('--logdir', type=str,
default=default_logdir,
help="Path to a directory for logging.\
Default value is 'benchmark_output/weight_svd_<Y-m-d-H-M-S>'")
parser.add_argument('--epochs', type=int,
default=15,
help="Number of epochs for finetuning.\n\
Default is 15")
parser.add_argument('--learning_rate', type=float,
default=1e-2,
help="A float type learning rate for model finetuning.\n\
Default is 0.01")
parser.add_argument('--learning_rate_schedule', type=list,
default=[5, 10],
help="A list of epoch indices for learning rate schedule used in finetuning.\n\
Check https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#MultiStepLR for more details.\n\
Default is [5, 10]")
_config = parser.parse_args()
os.makedirs(_config.logdir, exist_ok=True)
fileHandler = logging.FileHandler(os.path.join(_config.logdir, "test.log"))
fileHandler.setFormatter(formatter)
logger.addHandler(fileHandler)
if _config.use_cuda and not torch.cuda.is_available():
logger.error('use_cuda is selected but no cuda device found.')
raise RuntimeError("Found no CUDA Device while use_cuda is selected")
channel_pruning_example(_config)