-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain_dnn.py
328 lines (278 loc) · 11.5 KB
/
main_dnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""
Summary: Piano automatic music transcription (AMT) on MAPS dataset.
Author: Qiuqiang Kong
Created: 2017.12.11
Modified:
"""
from __future__ import print_function
import os
import numpy as np
import csv
import time
import pickle
import cPickle
import h5py
import argparse
import matplotlib.pyplot as plt
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import config as cfg
import prepare_data as pp_data
from data_generator import DataGenerator
feat_type = 'logmel'
def uniform_weights(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
scale = 0.1
m.weight.data = torch.nn.init.uniform(m.weight.data, -scale, scale)
m.bias.data.fill_(0.)
def glorot_uniform_weights(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
# w = torch.nn.init.xavier_uniform(m.weight.data, gain=nn.init.calculate_gain('relu'))
w = torch.nn.init.xavier_uniform(m.weight.data)
m.weight.data = w
m.bias.data.fill_(0.)
# Evaluate on batch.
def eval(model, gen, xs, ys, cuda):
model.eval()
pred_all = []
y_all = []
for (batch_x, batch_y) in gen.generate(xs=xs, ys=ys):
batch_x = torch.Tensor(batch_x)
batch_x = Variable(batch_x, volatile=True)
if cuda:
batch_x = batch_x.cuda()
pred = model(batch_x)
pred = pred.data.cpu().numpy()
pred_all.append(pred)
y_all.append(batch_y)
pred_all = np.concatenate(pred_all, axis=0)
y_all = np.concatenate(y_all, axis=0)
(tp, fn, fp, tn) = pp_data.tp_fn_fp_tn(pred_all, y_all, thres=0.5, average='micro')
(prec, recall, fvalue) = pp_data.prec_recall_fvalue(pred_all, y_all, thres=0.5, average='micro')
# Debug.
if False:
print("tp, fn, fp, tn: %d, %d, %d, %d" % (tp, fn, fp, tn))
print("prec: %f, recall: %f, fvalue: %f" % (prec, recall, fvalue))
class Net(nn.Module):
def __init__(self, n_concat, n_freq, n_out):
super(Net, self).__init__()
n_in = n_concat * n_freq
n_hid = 500
self.fc1 = nn.Linear(n_in, n_hid)
self.fc2 = nn.Linear(n_hid, n_hid)
self.fc3 = nn.Linear(n_hid, n_hid)
self.fc4 = nn.Linear(n_hid, n_out)
def forward(self, x):
drop_p = 0.2
x1 = x.view(len(x), -1)
x2 = F.dropout(F.relu(self.fc1(x1)), p=drop_p, training=self.training)
x3 = F.dropout(F.relu(self.fc2(x2)), p=drop_p, training=self.training)
x4 = F.dropout(F.relu(self.fc3(x3)), p=drop_p, training=self.training)
x5 = F.sigmoid(self.fc4(x4))
return x5
def train(args):
cuda = args.use_cuda and torch.cuda.is_available()
workspace = args.workspace
feat_type = args.feat_type
lr = args.lr
resume_model_path = args.resume_model_path
script_na = args.script_na
print("cuda:", cuda)
# Load data.
t1 = time.time()
tr_packed_feat_path = os.path.join(workspace, "packed_features", feat_type, "train.p")
te_packed_feat_path = os.path.join(workspace, "packed_features", feat_type, "test.p")
[tr_x_list, tr_y_list, tr_na_list] = cPickle.load(open(tr_packed_feat_path, 'rb'))
[te_x_list, te_y_list, te_na_list] = cPickle.load(open(te_packed_feat_path, 'rb'))
print("Loading packed feature time: %s s" % (time.time() - t1,))
# Scale.
if True:
scale_path = os.path.join(workspace, "scalers", feat_type, "scaler.p")
scaler = pickle.load(open(scale_path, 'rb'))
tr_x_list = pp_data.scale_on_x_list(tr_x_list, scaler)
te_x_list = pp_data.scale_on_x_list(te_x_list, scaler)
# Debug.
if False:
fig, axs = plt.subplots(2,1, sharex=True)
axs[0].matshow(tr_x_list[0].T, origin='lower', aspect='auto')
axs[1].matshow(tr_y_list[0].T, origin='lower', aspect='auto')
plt.show()
pause
# Data to 3d.
n_concat = 3
n_hop = 1
(tr_x, tr_y) = pp_data.data_to_3d(tr_x_list, tr_y_list, n_concat, n_hop)
(te_x, te_y) = pp_data.data_to_3d(te_x_list, te_y_list, n_concat, n_hop)
n_freq = tr_x.shape[-1]
n_out = tr_y.shape[-1]
print(tr_x.shape, tr_y.shape)
# Model.
model = Net(n_concat, n_freq, n_out)
if os.path.isfile(resume_model_path):
# Load weights.
print("Loading checkpoint '%s'" % resume_model_path)
checkpoint = torch.load(resume_model_path)
model.load_state_dict(checkpoint['state_dict'])
iter = checkpoint['iter']
else:
# Randomly init weights.
print("Train from random initialization. ")
model.apply(glorot_uniform_weights)
iter = 0
# Move model to GPU.
if cuda:
model.cuda()
# Optimizer.
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
# Data Generator
batch_size = 500
tr_gen = DataGenerator(batch_size=batch_size, type='train')
eval_tr_gen = DataGenerator(batch_size=batch_size, type='test', te_max_iter=20)
eval_te_gen = DataGenerator(batch_size=batch_size, type='test')
iters_per_epoch = len(tr_x) / batch_size
print("Iters_per_epoch: %d" % iters_per_epoch)
# Train.
eps = 1e-8
tr_time = 0
for (batch_x, batch_y) in tr_gen.generate(xs=[tr_x], ys=[tr_y]):
if iter % (1000) == 0:
print("\n--- Evaluation of training set (subset), iteration: %d ---" % iter)
eval(model, eval_tr_gen, [tr_x], [tr_y], cuda)
print("--- Evaluation of testing set, iteration: %d ---" % iter)
eval(model, eval_te_gen, [te_x], [te_y], cuda)
print("-----------------------------------------------\n")
# Move data to GPU.
t1 = time.time()
batch_x = torch.Tensor(batch_x)
batch_y = torch.Tensor(batch_y)
batch_x = Variable(batch_x)
batch_y = Variable(batch_y)
if cuda:
batch_x = batch_x.cuda()
batch_y = batch_y.cuda()
optimizer.zero_grad()
model.train()
output = model(batch_x)
output = torch.clamp(output, eps, 1. - eps)
loss = F.binary_cross_entropy(output, batch_y)
loss.backward()
optimizer.step()
if iter % 200 == 0:
print("Iter: %d loss: %f" % (iter, loss))
iter += 1
# Save model.
if iter % 1000 == 0:
save_out_dict = {'iter': iter,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(), }
save_out_path = os.path.join(workspace, "models", script_na, feat_type, "md_%diters.tar" % iter)
pp_data.create_folder(os.path.dirname(save_out_path))
torch.save(save_out_dict, save_out_path)
print("Save model to %s" % save_out_path)
# Stop training.
if iter == 10001:
break
def inference(args):
cuda = args.use_cuda and torch.cuda.is_available()
workspace = args.workspace
model_name = args.model_name
feat_type = args.feat_type
script_na = args.script_na
# Load data.
te_packed_feat_path = os.path.join(workspace, "packed_features", feat_type, "test.p")
[te_x_list, te_y_list, te_na_list] = cPickle.load(open(te_packed_feat_path, 'rb'))
# Scale.
if True:
scale_path = os.path.join(workspace, "scalers", feat_type, "scaler.p")
scaler = pickle.load(open(scale_path, 'rb'))
te_x_list = pp_data.scale_on_x_list(te_x_list, scaler)
# Construct model topology.
n_concat = 3
te_n_hop = 1
n_freq = te_x_list[0].shape[-1]
n_out = te_y_list[0].shape[-1]
model = Net(n_concat, n_freq, n_out)
# Init the weights of model using trained weights.
model_path = os.path.join(workspace, "models", script_na, feat_type, model_name)
if os.path.isfile(model_path):
print("Loading checkpoint '%s'" % model_path)
checkpoint = torch.load(model_path)
model.load_state_dict(checkpoint['state_dict'])
else:
raise Exception("Model path %s does not exist!" % model_path)
# Move model to GPU.
if cuda:
model.cuda()
# Directory to write out transcript midi files.
out_midi_dir = os.path.join(workspace, "out_midis", pp_data.get_filename(__file__), feat_type)
pp_data.create_folder(out_midi_dir)
# Data to 3d.
n_half = (n_concat - 1) / 2
for i1 in xrange(len(te_x_list)):
x = te_x_list[i1] # (n_time, n_freq)
y = te_y_list[i1] # (n_time, n_out)
bare_na = os.path.splitext(te_na_list[i1])[0]
(n_time, n_freq) = x.shape
zero_pad = np.zeros((n_half, n_freq))
x = np.concatenate((zero_pad, x, zero_pad), axis=0)
x3d = pp_data.mat_2d_to_3d(x, n_concat, te_n_hop) # (n_time, n_concat, n_freq)
# Move data to GPU.
x3d = torch.Tensor(x3d)
x3d = Variable(x3d)
if cuda:
x3d = x3d.cuda()
# Inference.
model.eval()
pred = model(x3d) # (n_time, n_out)
# Convert data type to numpy.
pred = pred.data.cpu().numpy()
# Threshold and write out predicted piano roll to midi file.
mid_roll = pp_data.prob_to_midi_roll(pred, 0.5)
out_path = os.path.join(out_midi_dir, "%s.mid" % bare_na)
print("Write out to: %s" % out_path)
pp_data.write_midi_roll_to_midi(mid_roll, out_path)
# Debug plot.
if True:
fig, axs = plt.subplots(3,1, sharex=True)
axs[0].matshow(y.T, origin='lower', aspect='auto')
axs[1].matshow(pred.T, origin='lower', aspect='auto')
binary_pred = (np.sign(pred - 0.5) + 1) / 2
axs[2].matshow(binary_pred.T, origin='lower', aspect='auto')
axs[0].set_title("Ground truth")
axs[1].set_title("DNN output probability")
axs[2].set_title("DNN output probability after thresholding")
for j1 in xrange(3):
axs[j1].set_ylabel('note index')
axs[j1].set_xlabel('frames')
axs[j1].xaxis.set_label_coords(1.06, -0.01)
axs[j1].xaxis.tick_bottom()
plt.tight_layout()
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest='mode')
parser_train = subparsers.add_parser('train')
parser_train.add_argument('--use_cuda', action='store_true', default=True)
parser_train.add_argument('--workspace', type=str)
parser_train.add_argument('--feat_type', type=str, choices=['logmel'])
parser_train.add_argument('--lr', type=float, default=1e-3)
parser_train.add_argument('--resume_model_path', type=str, default="")
parser_inference = subparsers.add_parser('inference')
parser_inference.add_argument('--use_cuda', action='store_true', default=True)
parser_inference.add_argument('--workspace', type=str)
parser_inference.add_argument('--model_name', type=str)
parser_inference.add_argument('--feat_type', type=str, choices=['logmel'])
args = parser.parse_args()
if args.mode == "train":
args.script_na = pp_data.get_filename(__file__)
train(args)
elif args.mode == "inference":
args.script_na = pp_data.get_filename(__file__)
inference(args)
else:
raise Exception("Incorrect argument!")