Skip to content

Latest commit

 

History

History
2180 lines (1679 loc) · 59 KB

advanced_usage_examples.rst

File metadata and controls

2180 lines (1679 loc) · 59 KB

Advanced usage examples

Advanced Django REST framework integration examples.

See the example project for sample models/views/serializers.

Contents:

books/models/publisher.py

import json

from django.conf import settings
from django.db import models
from django.utils.translation import ugettext, ugettext_lazy as _

from six import python_2_unicode_compatible

BOOK_PUBLISHING_STATUS_PUBLISHED = 'published'
BOOK_PUBLISHING_STATUS_NOT_PUBLISHED = 'not_published'
BOOK_PUBLISHING_STATUS_IN_PROGRESS = 'in_progress'
BOOK_PUBLISHING_STATUS_CANCELLED = 'cancelled'
BOOK_PUBLISHING_STATUS_REJECTED = 'rejected'
BOOK_PUBLISHING_STATUS_CHOICES = (
    (BOOK_PUBLISHING_STATUS_PUBLISHED, "Published"),
    (BOOK_PUBLISHING_STATUS_NOT_PUBLISHED, "Not published"),
    (BOOK_PUBLISHING_STATUS_IN_PROGRESS, "In progress"),
    (BOOK_PUBLISHING_STATUS_CANCELLED, "Cancelled"),
    (BOOK_PUBLISHING_STATUS_REJECTED, "Rejected"),
)
BOOK_PUBLISHING_STATUS_DEFAULT = BOOK_PUBLISHING_STATUS_PUBLISHED


@python_2_unicode_compatible
class Publisher(models.Model):
    """Publisher."""

    name = models.CharField(max_length=30)
    info = models.TextField(null=True, blank=True)
    address = models.CharField(max_length=50)
    city = models.CharField(max_length=60)
    state_province = models.CharField(max_length=30)
    country = models.CharField(max_length=50)
    website = models.URLField()
    latitude = models.DecimalField(null=True,
                               blank=True,
                               decimal_places=15,
                               max_digits=19,
                               default=0)
    longitude = models.DecimalField(null=True,
                                    blank=True,
                                    decimal_places=15,
                                    max_digits=19,
                                    default=0)

    class Meta(object):
        """Meta options."""

        ordering = ["id"]

    def __str__(self):
        return self.name

    @property
    def location_field_indexing(self):
        """Location for indexing.

        Used in Elasticsearch indexing/tests of `geo_distance` native filter.
        """
        return {
            'lat': self.latitude,
            'lon': self.longitude,
        }

books/models/author.py

@python_2_unicode_compatible
class Author(models.Model):
    """Author."""

    salutation = models.CharField(max_length=10)
    name = models.CharField(max_length=200)
    email = models.EmailField()
    headshot = models.ImageField(upload_to='authors', null=True, blank=True)

    class Meta(object):
        """Meta options."""

        ordering = ["id"]

    def __str__(self):
        return self.name

books/models/tag.py

class Tag(models.Model):
    """Simple tag model."""

    title = models.CharField(max_length=255, unique=True)

    class Meta(object):
        """Meta options."""

        verbose_name = _("Tag")
        verbose_name_plural = _("Tags")

    def __str__(self):
        return self.title

books/models/book.py

@python_2_unicode_compatible
class Book(models.Model):
    """Book."""

    title = models.CharField(max_length=100)
    description = models.TextField(null=True, blank=True)
    summary = models.TextField(null=True, blank=True)
    authors = models.ManyToManyField('books.Author', related_name='books')
    publisher = models.ForeignKey(Publisher, related_name='books')
    publication_date = models.DateField()
    state = models.CharField(max_length=100,
                             choices=BOOK_PUBLISHING_STATUS_CHOICES,
                             default=BOOK_PUBLISHING_STATUS_DEFAULT)
    isbn = models.CharField(max_length=100, unique=True)
    price = models.DecimalField(max_digits=10, decimal_places=2)
    pages = models.PositiveIntegerField(default=200)
    stock_count = models.PositiveIntegerField(default=30)
    tags = models.ManyToManyField('books.Tag',
                                  related_name='books',
                                  blank=True)

    class Meta(object):
        """Meta options."""

        ordering = ["isbn"]

    def __str__(self):
        return self.title

    @property
    def publisher_indexing(self):
        """Publisher for indexing.

        Used in Elasticsearch indexing.
        """
        if self.publisher is not None:
            return self.publisher.name

    @property
    def tags_indexing(self):
        """Tags for indexing.

        Used in Elasticsearch indexing.
        """
        return [tag.title for tag in self.tags.all()]

To separate dev/test/staging/production indexes, the following approach is recommended.

settings/base.py

# Name of the Elasticsearch index
ELASTICSEARCH_INDEX_NAMES = {
    'search_indexes.documents.book': 'book',
    'search_indexes.documents.publisher': 'publisher',
}

settings/testing.py

# Name of the Elasticsearch index
ELASTICSEARCH_INDEX_NAMES = {
    'search_indexes.documents.book': 'test_book',
    'search_indexes.documents.publisher': 'test_publisher',
}

settings/production.py

# Name of the Elasticsearch index
ELASTICSEARCH_INDEX_NAMES = {
    'search_indexes.documents.book': 'prod_book',
    'search_indexes.documents.publisher': 'prod_publisher',
}

search_indexes/documents/book.py

from django.conf import settings
from django_elasticsearch_dsl import DocType, Index, fields
from elasticsearch_dsl import analyzer

from books.models import Book

# Name of the Elasticsearch index
INDEX = Index(settings.ELASTICSEARCH_INDEX_NAMES[__name__])

# See Elasticsearch Indices API reference for available settings
INDEX.settings(
    number_of_shards=1,
    number_of_replicas=1
)

html_strip = analyzer(
    'html_strip',
    tokenizer="standard",
    filter=["standard", "lowercase", "stop", "snowball"],
    char_filter=["html_strip"]
)


@INDEX.doc_type
class BookDocument(DocType):
    """Book Elasticsearch document."""

    id = fields.IntegerField(attr='id')

    title = fields.StringField(
        analyzer=html_strip,
        fields={
            'raw': fields.StringField(analyzer='keyword'),
        }
    )

    description = fields.StringField(
        analyzer=html_strip,
        fields={
            'raw': fields.StringField(analyzer='keyword'),
        }
    )

    summary = fields.StringField(
        analyzer=html_strip,
        fields={
            'raw': fields.StringField(analyzer='keyword'),
        }
    )

    publisher = fields.StringField(
        attr='publisher_indexing',
        analyzer=html_strip,
        fields={
            'raw': fields.StringField(analyzer='keyword'),
        }
    )

    publication_date = fields.DateField()

    state = fields.StringField(
        analyzer=html_strip,
        fields={
            'raw': fields.StringField(analyzer='keyword'),
        }
    )

    isbn = fields.StringField(
        analyzer=html_strip,
        fields={
            'raw': fields.StringField(analyzer='keyword'),
        }
    )

    price = fields.FloatField()

    pages = fields.IntegerField()

    stock_count = fields.IntegerField()

    tags = fields.StringField(
        attr='tags_indexing',
        analyzer=html_strip,
        fields={
            'raw': fields.StringField(analyzer='keyword', multi=True),
            'suggest': fields.CompletionField(multi=True),
        },
        multi=True
    )

    class Meta(object):
        """Meta options."""

        model = Book  # The model associate with this DocType

search_indexes/serializers/tag.py

import json

from rest_framework import serializers

class TagSerializer(serializers.Serializer):
    """Helper serializer for the Tag field of the Book document."""

    title = serializers.CharField()

    class Meta(object):
        """Meta options."""

        fields = ('title',)
        read_only_fields = ('title',)

search_indexes/serializers/book.py

class BookDocumentSerializer(serializers.Serializer):
    """Serializer for the Book document."""

    id = serializers.SerializerMethodField()

    title = serializers.CharField(read_only=True)
    description = serializers.CharField(read_only=True)
    summary = serializers.CharField(read_only=True)

    publisher = serializers.CharField(read_only=True)
    publication_date = serializers.DateField(read_only=True)
    state = serializers.CharField(read_only=True)
    isbn = serializers.CharField(read_only=True)
    price = serializers.FloatField(read_only=True)
    pages = serializers.IntegerField(read_only=True)
    stock_count = serializers.IntegerField(read_only=True)
    tags = serializers.SerializerMethodField()

    class Meta(object):
        """Meta options."""

        fields = (
            'id',
            'title',
            'description',
            'summary',
            'publisher',
            'publication_date',
            'state',
            'isbn',
            'price',
            'pages',
            'stock_count',
            'tags',
        )
        read_only_fields = fields

    def get_tags(self, obj):
        """Get tags."""
        if obj.tags:
            return list(obj.tags)
        else:
            return []

search_indexes/viewsets/book.py

from django_elasticsearch_dsl_drf.constants import (
    LOOKUP_FILTER_TERMS,
    LOOKUP_FILTER_RANGE,
    LOOKUP_FILTER_PREFIX,
    LOOKUP_FILTER_WILDCARD,
    LOOKUP_QUERY_IN,
    LOOKUP_QUERY_EXCLUDE,
)
from django_elasticsearch_dsl_drf.filter_backends import (
    FilteringFilterBackend,
    OrderingFilterBackend,
    DefaultOrderingFilterBackend,
    SearchFilterBackend,
)
from django_elasticsearch_dsl_drf.viewsets import DocumentViewSet

# Example app models
from search_indexes.documents.book import BookDocument
from search_indxes.serializers import BookDocumentSerializer


class BookDocumentView(DocumentViewSet):
    """The BookDocument view."""

    document = BookDocument
    serializer_class = BookDocumentSerializer
    lookup_field = 'id'
    filter_backends = [
        FilteringFilterBackend,
        OrderingFilterBackend,
        DefaultOrderingFilterBackend,
        SearchFilterBackend,
    ]
    # Define search fields
    search_fields = (
        'title',
        'summary',
        'description',
    )
    # Define filtering fields
    filter_fields = {
        'id': {
            'field': '_id',
            'lookups': [
                LOOKUP_FILTER_RANGE,
                LOOKUP_QUERY_IN,
            ],
        },
        'publisher': 'publisher.raw',
        'publication_date': 'publication_date',
        'isbn': 'isbn.raw',
        'tags': {
            'field': 'tags',
            'lookups': [
                LOOKUP_FILTER_TERMS,
                LOOKUP_FILTER_PREFIX,
                LOOKUP_FILTER_WILDCARD,
                LOOKUP_QUERY_IN,
                LOOKUP_QUERY_EXCLUDE,
            ],
        },
        'tags.raw': {
            'field': 'tags.raw',
            'lookups': [
                LOOKUP_FILTER_TERMS,
                LOOKUP_FILTER_PREFIX,
                LOOKUP_FILTER_WILDCARD,
                LOOKUP_QUERY_IN,
                LOOKUP_QUERY_EXCLUDE,
            ],
        },
    }
    # Define ordering fields
    ordering_fields = {
        'id': 'id',
        'title': 'title.raw',
        'price': 'price.raw',
        'state': 'state.raw',
        'publication_date': 'publication_date',
    }
    # Specify default ordering
    ordering = ('id', 'title',)

Considering samples above, you should be able to perform the search, sorting and filtering actions described below.

Query param name reserved for search is search. Make sure your models and documents do not have it as a field or attribute.

Multiple search terms are joined with OR.

Let's assume we have a number of Book items with fields title, description and summary.

Search in all fields

Search in all fields (title, description and summary) for word "education".

http://127.0.0.1:8080/search/books/?search=education

Search a single term on specific field

In order to search in specific field (title) for term "education", add the field name separated with : to the search term.

http://127.0.0.1:8080/search/books/?search=title:education

Search for multiple terms

In order to search for multiple terms "education", "technology" add multiple search query params.

http://127.0.0.1:8080/search/books/?search=education&search=technology

Search for multiple terms on specific fields

In order to search for multiple terms "education", "technology" in specific fields add multiple search query params and field names separated with : to each of the search terms.

http://127.0.0.1:8080/search/books/?search=title:education&search=summary:technology

Search with boosting

It's possible to boost search fields. In order to do that change the search_fields definition of the DocumentViewSet as follows:

class BookDocumentView(DocumentViewSet):
    """The BookDocument view."""

    # ...

    # Define search fields
    search_fields = {
        'title': {'boost': 4},
        'summary': {'boost': 2},
        'description': None,
    }

    # Order by `_score` first.
    ordering = ('_score', 'id', 'title', 'price',)

    # ...

Note, that we are ordering results by _score first.

Let's assume we have a number of Book documents with the tags (education, politics, economy, biology, climate, environment, internet, technology).

Multiple filter terms are joined with AND.

Filter documents by field

Filter documents by field (state) "published".

http://127.0.0.1:8080/search/books/?state=published

Filter documents by multiple fields

Filter documents by field (states) "published" and "in_progress".

http://127.0.0.1:8080/search/books/?state__in=published__in_progress

Filter document by a single field

Filter documents by (field tag) "education".

http://127.0.0.1:8080/search/books/?tag=education

Filter documents by multiple fields

Filter documents by multiple fields (field tags) "education" and "economy" with use of functional in query filter.

http://127.0.0.1:8080/search/books/?tags__in=education__economy

You can achieve the same effect by specifying multiple fields (tags) "education" and "economy". Note, that in this case multiple filter terms are joined with OR.

http://127.0.0.1:8080/search/books/?tags=education&tags=economy

If you want the same as above, but joined with AND, add __term to each lookup.

http://127.0.0.1:8080/search/books/?tags__term=education&tags__term=economy

Filter documents by a word part of a single field

Filter documents by a part word part in single field (tags). Word part should match both "technology" and "biology".

http://127.0.0.1:8080/search/books/?tags__wildcard=*logy

The - prefix means ordering should be descending.

Order documents by field (ascending)

Order documents by field price (ascending).

http://127.0.0.1:8080/search/books/?search=title:lorem&ordering=price

Order documents by field (descending)

Order documents by field price (descending).

http://127.0.0.1:8080/search/books/?search=title:lorem&ordering=-price

Order documents by multiple fields

If you want to order by multiple fields, use multiple ordering query params. In the example below, documents would be ordered first by field publication_date (descending), then by field price (ascending).

http://127.0.0.1:8080/search/books/?search=title:lorem&ordering=-publication_date&ordering=price

Filters documents that only have the provided ids.

http://127.0.0.1:8000/api/articles/?ids=68__64__58

Or, alternatively:

http://127.0.0.1:8000/api/articles/?ids=68&ids=64&ids=58

In order to add faceted search support, we would have to extend our view set in the following way:

search_indexes/viewsets/book.py

# ...

from django_elasticsearch_dsl_drf.filter_backends import (
    # ...
    FacetedSearchFilterBackend,
)

# ...

from elasticsearch_dsl import (
    DateHistogramFacet,
    RangeFacet,
    TermsFacet,
)

# ...

class BookDocumentView(DocumentViewSet):
    """The BookDocument view."""

    # ...

    filter_backends = [
        # ...
        FacetedSearchFilterBackend,
    ]

    # ...

    faceted_search_fields = {
        'state': 'state.raw',  # By default, TermsFacet is used
        'publisher': {
            'field': 'publisher.raw',
            'facet': TermsFacet,  # But we can define it explicitly
            'enabled': True,
        },
        'publication_date': {
            'field': 'publication_date',
            'facet': DateHistogramFacet,
            'options': {
                'interval': 'year',
            }
        },
        'pages_count': {
            'field': 'pages',
            'facet': RangeFacet,
            'options': {
                'ranges': [
                    ("<10", (None, 10)),
                    ("11-20", (11, 20)),
                    ("20-50", (20, 50)),
                    (">50", (50, None)),
                ]
            }
        },
    }

    # ...

Note, that none of the facets is enabled by default, unless you explicitly specify it to be enabled. That means, that you will have to add a query string facet={facet_field_name} for each of the facets you want to see in results.

In the example below, we show results with faceted state and pages_count facets.

http://127.0.0.1:8000/search/books/?facet=state&facet=pages_count

The post_filter is very similar to the common filter. The only difference is that it doesn't affect facets. So, whatever post-filters applied, the numbers in facets will remain intact.

Note

Note the PostFilterFilteringFilterBackend and post_filter_fields usage.

search_indexes/viewsets/book.py

# ...

from django_elasticsearch_dsl_drf.filter_backends import (
    # ...
    PostFilterFilteringFilterBackend,
)

# ...

class BookDocumentView(DocumentViewSet):
    """The BookDocument view."""

    document = BookDocument
    serializer_class = BookDocumentSerializer
    lookup_field = 'id'
    filter_backends = [
        FilteringFilterBackend,
        OrderingFilterBackend,
        DefaultOrderingFilterBackend,
        SearchFilterBackend,
        PostFilterFilteringFilterBackend,
    ]
    # Define search fields
    search_fields = (
        'title',
        'summary',
        'description',
    )
    # Define filtering fields
    filter_fields = {
        'id': {
            'field': '_id',
            'lookups': [
                LOOKUP_FILTER_RANGE,
                LOOKUP_QUERY_IN,
            ],
        },
        'publisher': 'publisher.raw',
        'publication_date': 'publication_date',
        'isbn': 'isbn.raw',
        'tags': {
            'field': 'tags',
            'lookups': [
                LOOKUP_FILTER_TERMS,
                LOOKUP_FILTER_PREFIX,
                LOOKUP_FILTER_WILDCARD,
                LOOKUP_QUERY_IN,
                LOOKUP_QUERY_EXCLUDE,
            ],
        },
        'tags.raw': {
            'field': 'tags.raw',
            'lookups': [
                LOOKUP_FILTER_TERMS,
                LOOKUP_FILTER_PREFIX,
                LOOKUP_FILTER_WILDCARD,
                LOOKUP_QUERY_IN,
                LOOKUP_QUERY_EXCLUDE,
            ],
        },
    }
    # Define post-filter filtering fields
    post_filter_fields = {
        'publisher_pf': 'publisher.raw',
        'isbn_pf': 'isbn.raw',
        'state_pf': 'state.raw',
        'tags_pf': {
            'field': 'tags',
            'lookups': [
                LOOKUP_FILTER_TERMS,
                LOOKUP_FILTER_PREFIX,
                LOOKUP_FILTER_WILDCARD,
                LOOKUP_QUERY_IN,
                LOOKUP_QUERY_EXCLUDE,
            ],
        },
    }
    # Define ordering fields
    ordering_fields = {
        'id': 'id',
        'title': 'title.raw',
        'price': 'price.raw',
        'state': 'state.raw',
        'publication_date': 'publication_date',
    }
    # Specify default ordering
    ordering = ('id', 'title',)

Filter documents by field

Filter documents by field (state) "published".

http://127.0.0.1:8080/search/books/?state_pf=published

Filter documents by multiple fields

Filter documents by field (states) "published" and "in_progress".

http://127.0.0.1:8080/search/books/?state_pf__in=published__in_progress

For testing the boundaries the following online services might be helpful:

Geo-distance filtering

Filter documents by radius of 100000km from the given location.

http://localhost:8000/search/publishers/?location__geo_distance=100000km__12.04__-63.93

Geo-polygon filtering

Filter documents that are located in the given polygon.

http://localhost:8000/search/publishers/?location__geo_polygon=40,-70__30,-80__20,-90

Geo-bounding-box filtering

Filter documents that are located in the given bounding box.

http://localhost:8000/search/publishers/?location__geo_bounding_box=44.87,40.07__43.87,41.11

Geo-distance ordering

http://localhost:8000/search/publishers/?ordering=location__48.85__2.30__km__plane

The suggest feature suggests similar looking terms based on a provided text by using a suggester.

Note

The SuggesterFilterBackend filter backend can be used in the suggest custom view action/route only. Usages outside of the are suggest action/route are restricted.

There are three options available here: term, phrase and completion.

Note

Suggestion functionality is exclusive. Once you have queried the SuggesterFilterBackend, the latter will transform your current search query into suggestion search query (which is very different). Therefore, always add it as the very last filter backend.

To make use of suggestions, you should properly index relevant fields of your documents using fields.CompletionField.

search_indexes/documents/publisher.py

from django.conf import settings

from django_elasticsearch_dsl import DocType, Index, fields

from books.models import Publisher

# Name of the Elasticsearch index
INDEX = Index(settings.ELASTICSEARCH_INDEX_NAMES[__name__])

# See Elasticsearch Indices API reference for available settings
INDEX.settings(
    number_of_shards=1,
    number_of_replicas=1
)


@INDEX.doc_type
class PublisherDocument(DocType):
    """Publisher Elasticsearch document."""

    id = fields.IntegerField(attr='id')

    name = fields.StringField(
        fields={
            'raw': fields.StringField(analyzer='keyword'),
            'suggest': fields.CompletionField(),
        }
    )

    info = fields.StringField()

    address = fields.StringField(
        fields={
            'raw': fields.StringField(analyzer='keyword')
        }
    )

    city = fields.StringField(
        fields={
            'raw': fields.StringField(analyzer='keyword'),
            'suggest': fields.CompletionField(),
        }
    )

    state_province = fields.StringField(
        fields={
            'raw': fields.StringField(analyzer='keyword'),
            'suggest': fields.CompletionField(),
        }
    )

    country = fields.StringField(
        fields={
            'raw': fields.StringField(analyzer='keyword'),
            'suggest': fields.CompletionField(),
        }
    )

    website = fields.StringField()

    # Location
    location = fields.GeoPointField(attr='location_field_indexing')

    class Meta(object):
        """Meta options."""

        model = Publisher  # The model associate with this DocType

After that the name.suggest, city.suggest, state_province.suggest and country.suggest fields would be available for suggestions feature.

This is how publisher serializer would look like.

search_indexes/serializers/publisher.py

import json

from django_elasticsearch_dsl_drf.serializers import DocumentSerializer

class PublisherDocumentSerializer(DocumentSerializer):
    """Serializer for Publisher document."""

    class Meta(object):
        """Meta options."""

        # Note, that since we're using a dynamic serializer,
        # we only have to declare fields that we want to be shown. If
        # somehow, dynamic serializer doesn't work for you, either extend
        # or declare your serializer explicitly.
        fields = (
            'id',
            'name',
            'info',
            'address',
            'city',
            'state_province',
            'country',
            'website',
        )

In order to add suggestions support, we would have to extend our view set in the following way:

search_indexes/viewsets/publisher.py

# ...

from django_elasticsearch_dsl_drf.constants import SUGGESTER_COMPLETION
from django_elasticsearch_dsl_drf.filter_backends import (
    # ...
    SuggesterFilterBackend,
)

# ...

class PublisherDocumentViewSet(DocumentViewSet):
    """The PublisherDocument view."""

    document = PublisherDocument

    # ...

    filter_backends = [
        # ...
        SuggesterFilterBackend,
    ]

    # ...

    # Suggester fields
    suggester_fields = {
        'name_suggest': {
            'field': 'name.suggest',
            'suggesters': [
                SUGGESTER_COMPLETION,
            ],
        },
        'city_suggest': {
            'field': 'city.suggest',
            'suggesters': [
                SUGGESTER_COMPLETION,
            ],
        },
        'state_province_suggest': {
            'field': 'state_province.suggest',
            'suggesters': [
                SUGGESTER_COMPLETION,
            ],
        },
        'country_suggest': {
            'field': 'country.suggest',
            'suggesters': [
                SUGGESTER_COMPLETION,
            ],
        },
    }

    # Geo-spatial filtering fields
    geo_spatial_filter_fields = {
        'location': {
            'lookups': [
                LOOKUP_FILTER_GEO_DISTANCE,
            ],
        },
    }

In the example below, we show suggestion results (auto-completion) for country field.

Once you have extended your view set with SuggesterFilterBackend functionality, you can make use of the suggest custom action of your view set.

Request

GET http://127.0.0.1:8000/search/publishers/suggest/?country_suggest__completion=Ar

Response

{
    "_shards": {
        "failed": 0,
        "successful": 1,
        "total": 1
    },
    "country_suggest__completion": [
        {
            "options": [
                {
                    "score": 1.0,
                    "text": "Armenia"
                },
                {
                    "score": 1.0,
                    "text": "Argentina"
                }
            ],
            "offset": 0,
            "length": 2,
            "text": "Ar"
        }
    ]
}

You can also have multiple suggesters per request.

Request

GET http://127.0.0.1:8000/search/publishers/suggest/?name_suggest__completion=B&country_suggest__completion=Ar

Response

{
    "_shards": {
        "successful": 1,
        "total": 1,
        "failed": 0
    },
    "country_suggest__completion": [
        {
            "text": "Ar",
            "options": [
                {
                    "score": 1.0,
                    "text": "Armenia"
                },
                {
                    "score": 1.0,
                    "text": "Argentina"
                }
            ],
            "offset": 0,
            "length": 2
        }
    ],
    "name_suggest__completion": [
        {
            "text": "B",
            "options": [
                {
                    "score": 1.0,
                    "text": "Book Works"
                },
                {
                    "score": 1.0,
                    "text": "Brumleve LLC"
                },
                {
                    "score": 1.0,
                    "text": "Booktrope"
                },
                {
                    "score": 1.0,
                    "text": "Borman, Post and Wendt"
                },
                {
                    "score": 1.0,
                    "text": "Book League of America"
                }
            ],
            "offset": 0,
            "length": 1
        }
    ]
}

Suggestions on Array/List fields (typical use case - tags, where Tag model would be a many-to-many relation to a Book model) work almost the same.

Before checking the Sample requests/responses, do have in mind the following:

Once you have extended your view set with SuggesterFilterBackend functionality, you can make use of the suggest custom action of your view set.

Request

GET http://127.0.0.1:8000/search/books/suggest/?tag_suggest__completion=bio

Response

{
    "_shards": {
        "failed": 0,
        "successful": 1,
        "total": 1
    },
    "country_suggest__completion": [
        {
            "options": [
                {
                    "score": 1.0,
                    "text": "Biography"
                },
                {
                    "score": 1.0,
                    "text": "Biology"
                }
            ],
            "offset": 0,
            "length": 2,
            "text": "bio"
        }
    ]
}

While for the completion suggesters to work the CompletionField shall be used, the term and phrase suggesters work on common text fields.

search_indexes/documents/book.py

from django.conf import settings

from django_elasticsearch_dsl import DocType, Index, fields

from books.models import Book

# Name of the Elasticsearch index
INDEX = Index(settings.ELASTICSEARCH_INDEX_NAMES[__name__])

# See Elasticsearch Indices API reference for available settings
INDEX.settings(
    number_of_shards=1,
    number_of_replicas=1
)

@INDEX.doc_type
class BookDocument(DocType):
    """Book Elasticsearch document."""
    # ID
    id = fields.IntegerField(attr='id')

    title = StringField(
        analyzer=html_strip,
        fields={
            'raw': KeywordField(),
            'suggest': fields.CompletionField(),
        }
    )

    description = StringField(
        analyzer=html_strip,
        fields={
            'raw': KeywordField(),
        }
    )

    summary = StringField(
        analyzer=html_strip,
        fields={
            'raw': KeywordField()
        }
    )

    # Publisher
    publisher = StringField(
        attr='publisher_indexing',
        analyzer=html_strip,
        fields={
            'raw': KeywordField(),
            'suggest': fields.CompletionField(),
        }
    )

    # Publication date
    publication_date = fields.DateField()

    # State
    state = StringField(
        analyzer=html_strip,
        fields={
            'raw': KeywordField(),
        }
    )

    # ISBN
    isbn = StringField(
        analyzer=html_strip,
        fields={
            'raw': KeywordField(),
        }
    )

    # Price
    price = fields.FloatField()

    # Pages
    pages = fields.IntegerField()

    # Stock count
    stock_count = fields.IntegerField()

    # Tags
    tags = StringField(
        attr='tags_indexing',
        analyzer=html_strip,
        fields={
            'raw': KeywordField(multi=True),
            'suggest': fields.CompletionField(multi=True),
        },
        multi=True
    )

    null_field = fields.StringField(attr='null_field_indexing')

    class Meta(object):
        """Meta options."""

        model = Book  # The model associate with this DocType

Note

The suggester filter backends shall come as last ones.

Suggesters for the view are configured in suggester_fields property.

In the example below, the title_suggest is the name of the GET query param which points to the title.suggest field of the BookDocument document. For the title_suggest the allowed suggesters are SUGGESTER_COMPLETION, SUGGESTER_TERM and SUGGESTER_PHRASE.

URL shall be constructed in the following way:

/search/books/suggest/?{QUERY_PARAM}__{SUGGESTER_NAME}={VALUE}

Example for completion suggester:

GET http://127.0.0.1:8000/search/books/suggest/?title_suggest__completion=temp

However, since we have default_suggester defined we can skip the __{SUGGESTER_NAME} part (if we want completion suggester functionality). Thus, it might be written as short as:

GET http://127.0.0.1:8000/search/books/suggest/?title_suggest=temp

Example for term suggester:

GET http://127.0.0.1:8000/search/books/suggest/?title_suggest__term=tmeporus

Example for phrase suggester:

GET http://127.0.0.1:8000/search/books/suggest/?title_suggest__phrase=tmeporus

search_indexes/viewsets/book.py

from django_elasticsearch_dsl_drf.constants import (
    LOOKUP_FILTER_PREFIX,
    LOOKUP_FILTER_RANGE,
    LOOKUP_FILTER_TERMS,
    LOOKUP_FILTER_WILDCARD,
    LOOKUP_QUERY_EXCLUDE,
    LOOKUP_QUERY_GT,
    LOOKUP_QUERY_GTE,
    LOOKUP_QUERY_IN,
    LOOKUP_QUERY_IN,
    LOOKUP_QUERY_ISNULL,
    LOOKUP_QUERY_LT,
    LOOKUP_QUERY_LTE,
    SUGGESTER_COMPLETION,
    SUGGESTER_PHRASE,
    SUGGESTER_TERM,
)
from django_elasticsearch_dsl_drf.filter_backends import (
    # ...
    SuggesterFilterBackend,
)

class BookDocumentViewSet(DocumentViewSet):
    """The BookDocument view."""

    document = BookDocument
    # serializer_class = BookDocumentSerializer
    serializer_class = BookDocumentSimpleSerializer
    lookup_field = 'id'
    filter_backends = [
        FilteringFilterBackend,
        OrderingFilterBackend,
        DefaultOrderingFilterBackend,
        SearchFilterBackend,
        SuggesterFilterBackend,  # This should be the last backend
    ]
    # Define search fields
    search_fields = (
        'title',
        'description',
        'summary',
    )
    # Define filter fields
    filter_fields = {
        'id': {
            'field': 'id',
            'lookups': [
                LOOKUP_FILTER_RANGE,
                LOOKUP_QUERY_IN,
                LOOKUP_QUERY_GT,
                LOOKUP_QUERY_GTE,
                LOOKUP_QUERY_LT,
                LOOKUP_QUERY_LTE,
                LOOKUP_FILTER_TERMS,
            ],
        },
        'title': 'title.raw',
        'publisher': 'publisher.raw',
        'publication_date': 'publication_date',
        'state': 'state.raw',
        'isbn': 'isbn.raw',
        'price': {
            'field': 'price.raw',
            'lookups': [
                LOOKUP_FILTER_RANGE,
            ],
        },
        'pages': {
            'field': 'pages',
            'lookups': [
                LOOKUP_FILTER_RANGE,
                LOOKUP_QUERY_GT,
                LOOKUP_QUERY_GTE,
                LOOKUP_QUERY_LT,
                LOOKUP_QUERY_LTE,
            ],
        },
        'stock_count': {
            # 'field': 'stock_count',
            'lookups': [
                LOOKUP_FILTER_RANGE,
                LOOKUP_QUERY_GT,
                LOOKUP_QUERY_GTE,
                LOOKUP_QUERY_LT,
                LOOKUP_QUERY_LTE,
            ],
        },
        'tags': {
            'field': 'tags',
            'lookups': [
                LOOKUP_FILTER_TERMS,
                LOOKUP_FILTER_PREFIX,
                LOOKUP_FILTER_WILDCARD,
                LOOKUP_QUERY_IN,
                LOOKUP_QUERY_EXCLUDE,
                LOOKUP_QUERY_ISNULL,
            ],
        },
        'tags.raw': {
            'field': 'tags.raw',
            'lookups': [
                LOOKUP_FILTER_TERMS,
                LOOKUP_FILTER_PREFIX,
                LOOKUP_FILTER_WILDCARD,
                LOOKUP_QUERY_IN,
                LOOKUP_QUERY_EXCLUDE,
            ],
        },
        # This has been added to test `exists` filter.
        'non_existent_field': 'non_existent_field',
        # This has been added to test `isnull` filter.
        'null_field': 'null_field',
    }
    # Define ordering fields
    ordering_fields = {
        'id': 'id',
        'title': 'title.raw',
        'price': 'price.raw',
        'state': 'state.raw',
        'publication_date': 'publication_date',
    }
    # Specify default ordering
    ordering = ('id', 'title', 'price',)

    # Suggester fields
    suggester_fields = {
        'title_suggest': {
            'field': 'title.suggest',
            'suggesters': [
                SUGGESTER_COMPLETION,
                SUGGESTER_TERM,
                SUGGESTER_PHRASE,
            ]
            'default_suggester': SUGGESTER_COMPLETION,
        },
        'publisher_suggest': 'publisher.suggest',
        'tag_suggest': 'tags.suggest',
        'summary_suggest': 'summary',
    }

Once you have extended your view set with SuggesterFilterBackend functionality, you can make use of the suggest custom action of your view set.

Let's considering, that one of our books has the following text in the summary:

Twas brillig, and the slithy toves
Did gyre and gimble in the wabe.
All mimsy were the borogoves
And the mome raths outgrabe.

"Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
The frumious Bandersnatch!"

He took his vorpal sword in his hand,
Long time the manxome foe he sought --
So rested he by the Tumtum tree,
And stood awhile in thought.

Request

GET http://127.0.0.1:8000/search/books/suggest/?title_suggest__completion=temp

Response

{
    "_shards": {
        "successful": 1,
        "total": 1,
        "failed": 0
    },
    "title_suggest": [
        {
            "length": 4,
            "text": "temp",
            "options": [
                {
                    "text": "Tempora voluptates distinctio facere ",
                    "_index": "book",
                    "_score": 1.0,
                    "_id": "1000087",
                    "_type": "book_document",
                    "_source": {
                        "description": null,
                        "summary": "Veniam dolores recusandae maxime laborum earum.",
                        "id": 1000087,
                        "state": "cancelled",
                        "authors": [
                            "Jayden van Luyssel",
                            "Yassin van Rooij",
                            "Florian van 't Erve",
                            "Mats van Nimwegen",
                            "Wessel Keltenie"
                        ],
                        "title": "Tempora voluptates distinctio facere."
                    }
                },
                {
                    "text": "Tempore sapiente repellat alias ad corrupti",
                    "_index": "book",
                    "_score": 1.0,
                    "_id": "29",
                    "_type": "book_document"
                    "_source": {
                        "description": null,
                        "summary": "Dolores minus architecto iure fugit qui sed.",
                        "id": 29,
                        "state": "canelled",
                        "authors": [
                            "Wout van Northeim",
                            "Lenn van Vliet-Kuijpers",
                            "Tijs Mulder"
                        ],
                        "title": "Tempore sapiente repellat alias ad."
                    },

                },
                {
                    "text": "Temporibus exercitationem minus expedita",
                    "_index": "book",
                    "_score": 1.0,
                    "_id": "17",
                    "_type": "book_document",
                    "_source": {
                        "description": null,
                        "summary": "A laborum alias voluptates tenetur sapiente modi.",
                        "id": 17,
                        "state": "canelled",
                        "authors": [
                            "Juliette Estey",
                            "Keano de Keijzer",
                            "Koen Scheffers",
                            "Florian van 't Erve",
                            "Tara Oversteeg",
                            "Mats van Nimwegen"
                        ],
                        "title": "Temporibus exercitationem minus expedita."
                    }
                }
            ],
            "offset": 0
        }
    ]
}

Request

GET http://127.0.0.1:8000/search/books/suggest/?summary_suggest__term=tovse

Response

{
    "_shards": {
        "failed": 0,
        "total": 1,
        "successful": 1
    },
    "summary_suggest__term": [
        {
            "text": "tovs",
            "offset": 0,
            "options": [
                {
                    "text": "tove",
                    "score": 0.75,
                    "freq": 1
                },
                {
                    "text": "took",
                    "score": 0.5,
                    "freq": 1
                },
                {
                    "text": "twas",
                    "score": 0.5,
                    "freq": 1
                }
            ],
            "length": 5
        }
    ]
}

Request

GET http://127.0.0.1:8000/search/books/suggest/?summary_suggest__phrase=slith%20tovs

Response

{
    "summary_suggest__phrase": [
        {
            "text": "slith tovs",
            "offset": 0,
            "options": [
                {
                    "text": "slithi tov",
                    "score": 0.00083028956
                }
            ],
            "length": 10
        }
    ],
    "_shards": {
        "failed": 0,
        "total": 1,
        "successful": 1
    }
}

If native suggestions are not good enough for you, use functional suggesters.

Configuration is very similar to native suggesters.

Obviously, different filters require different approaches. For instance, when using functional completion prefix filter, the best approach is to use keyword field of the Elasticsearch. While for match completion, Ngram fields work really well.

The following example indicates Ngram analyzer/filter usage.

search_indexes/documents/book.py

from django.conf import settings
from django_elasticsearch_dsl import DocType, Index, fields

from elasticsearch_dsl import analyzer
from elasticsearch_dsl.analysis import token_filter

from books.models import Book

edge_ngram_completion_filter = token_filter(
    'edge_ngram_completion_filter',
    type="edge_ngram",
    min_gram=1,
    max_gram=20
)


edge_ngram_completion = analyzer(
    "edge_ngram_completion",
    tokenizer="standard",
    filter=["lowercase", edge_ngram_completion_filter]
)

INDEX = Index(settings.ELASTICSEARCH_INDEX_NAMES[__name__])

# See Elasticsearch Indices API reference for available settings
INDEX.settings(
    number_of_shards=1,
    number_of_replicas=1
)

@INDEX.doc_type
class BookDocument(DocType):
    """Book Elasticsearch document."""

    # In different parts of the code different fields are used. There are
    # a couple of use cases: (1) more-like-this functionality, where `title`,
    # `description` and `summary` fields are used, (2) search and filtering
    # functionality where all of the fields are used.

    # ID
    id = fields.IntegerField(attr='id')

    # ********************************************************************
    # *********************** Main data fields for search ****************
    # ********************************************************************

    title = StringField(
        analyzer=html_strip,
        fields={
            'raw': KeywordField(),
            'suggest': fields.CompletionField(),
            'edge_ngram_completion': StringField(
                analyzer=edge_ngram_completion
            ),
        }
    )

    # ...

    class Meta(object):
        """Meta options."""

        model = Book  # The model associate with this DocType

Note

The suggester filter backends shall come as last ones.

Functional suggesters for the view are configured in functional_suggester_fields property.

In the example below, the title_suggest is the name of the GET query param which points to the title.raw field of the BookDocument document. For the title_suggest the allowed suggester is FUNCTIONAL_SUGGESTER_COMPLETION_PREFIX. For Ngram match we have the title_suggest_match field, which points to title.edge_ngram_completion field of the same document. For title_suggest_match the allowed suggester is FUNCTIONAL_SUGGESTER_COMPLETION_MATCH.

URL shall be constructed in the following way:

/search/books/functional_suggest/?{QUERY_PARAM}__{SUGGESTER_NAME}={VALUE}

Example for completion_prefix suggester:

GET http://localhost:8000/search/books/functional_suggest/?title_suggest_prefix__completion_prefix=Temp

However, since we have default_suggester defined we can skip the __{SUGGESTER_NAME} part (if we want completion_prefix suggester functionality). Thus, it might be written as short as:

GET http://localhost:8000/search/books/functional_suggest/?title_suggest_prefix=Temp

Example for completion_match suggester:

GET http://localhost:8000/search/books/functional_suggest/?title_suggest_match__completion_match=Temp

However, since we have default_suggester defined we can skip the __{SUGGESTER_NAME} part (if we want completion_match suggester functionality). Thus, it might be written as short as:

GET http://localhost:8000/search/books/functional_suggest/?title_suggest_match=Temp

search_indexes/viewsets/book.py

from django_elasticsearch_dsl_drf.constants import (
    # ...
    FUNCTIONAL_SUGGESTER_COMPLETION_PREFIX,
    FUNCTIONAL_SUGGESTER_COMPLETION_MATCH,
)
from django_elasticsearch_dsl_drf.filter_backends import (
    # ...
    SuggesterFilterBackend,
)

class BookDocumentViewSet(DocumentViewSet):
    """The BookDocument view."""

    document = BookDocument
    serializer_class = BookDocumentSerializer
    lookup_field = 'id'
    filter_backends = [
        FilteringFilterBackend,
        IdsFilterBackend,
        OrderingFilterBackend,
        DefaultOrderingFilterBackend,
        SearchFilterBackend,
        FacetedSearchFilterBackend,
        HighlightBackend,
        FunctionalSuggesterFilterBackend,  # This should come as last
    ]

    # ...

    # Functional suggester fields
    functional_suggester_fields = {
        'title_suggest': {
            'field': 'title.raw',
            'suggesters': [
                FUNCTIONAL_SUGGESTER_COMPLETION_PREFIX,
            ],
            'default_suggester': FUNCTIONAL_SUGGESTER_COMPLETION_PREFIX,
        },
        'title_suggest_match': {
            'field': 'title.edge_ngram_completion',
            'suggesters': [FUNCTIONAL_SUGGESTER_COMPLETION_MATCH],
            'default_suggester': FUNCTIONAL_SUGGESTER_COMPLETION_MATCH,
        }
    }

Highlighters enable you to get highlighted snippets from one or more fields in your search results so you can show users where the query matches are.

ViewSet definition

from django_elasticsearch_dsl_drf.viewsets import DocumentViewSet
from django_elasticsearch_dsl_drf.filter_backends import (
    # ...
    HighlightBackend,
)

from ..documents import BookDocument
from ..serializers import BookDocumentSimpleSerializer


class BookDocumentViewSet(BaseDocumentViewSet):
"""The BookDocument view."""

    document = BookDocument
    # serializer_class = BookDocumentSerializer
    serializer_class = BookDocumentSimpleSerializer
    lookup_field = 'id'
    filter_backends = [
        # ...
        HighlightBackend,
    ]

    # ...

    # Define highlight fields
    highlight_fields = {
        'title': {
            'enabled': True,
            'options': {
                'pre_tags': ["<b>"],
                'post_tags': ["</b>"],
            }
        },
        'summary': {
            'options': {
                'fragment_size': 50,
                'number_of_fragments': 3
            }
        },
        'description': {},
    }

    # ...

Request

GET http://127.0.0.1:8000/search/books/?search=optimisation&highlight=title&highlight=summary

Response

{
    "count": 1,
    "next": null,
    "previous": null,
    "facets": {
        "_filter_publisher": {
            "publisher": {
                "buckets": [
                    {
                        "key": "Self published",
                        "doc_count": 1
                    }
                ],
                "doc_count_error_upper_bound": 0,
                "sum_other_doc_count": 0
            },
            "doc_count": 1
        }
    },
    "results": [
        {
            "id": 999999,
            "title": "Performance optimisation",
            "description": null,
            "summary": "Ad animi adipisci libero facilis iure totam
                        impedit. Facilis maiores quae qui magnam dolores.
                        Veritatis quia amet porro voluptates iure quod
                        impedit. Dolor voluptatibus maiores at libero
                        magnam.",
            "authors": [
                "Artur Barseghyan"
            ],
            "publisher": "Self published",
            "publication_date": "1981-04-29",
            "state": "cancelled",
            "isbn": "978-1-7372176-0-2",
            "price": 40.51,
            "pages": 162,
            "stock_count": 30,
            "tags": [
                "Guide",
                "Poetry",
                "Fantasy"
            ],
            "highlight": {
                "title": [
                    "Performance <b>optimisation</b>"
                ]
            },
            "null_field": null
        }
    ]
}

By default, the PageNumberPagination class is used on all view sets which inherit from DocumentViewSet.

Example:

http://127.0.0.1:8000/search/books/?page=4
http://127.0.0.1:8000/search/books/?page=4&page_size=100

In order to use a different pagination_class, for instance the LimitOffsetPagination, specify it explicitly in the view.

search_indexes/viewsets/book.py

# ...

from django_elasticsearch_dsl_drf.pagination import LimitOffsetPagination

# ...

class BookDocumentView(DocumentViewSet):
    """The BookDocument view."""

    # ...

    pagination_class = LimitOffsetPagination

    # ...

Example:

http://127.0.0.1:8000/search/books/?limit=100
http://127.0.0.1:8000/search/books/?offset=400&limit=100

If you want to add additional data to the paginated response, for instance, the page size, subclass the correspondent pagination class and add your modifications in the get_paginated_response_context method as follows:

from django_elasticsearch_dsl_drf.pagination import PageNumberPagination


class CustomPageNumberPagination(PageNumberPagination):
    """Custom page number pagination."""

    def get_paginated_response_context(self, data):
        __data = super(
            CustomPageNumberPagination,
            self
        ).get_paginated_response_context(data)
        __data.append(
            ('current_page', int(self.request.query_params.get('page', 1)))
        )
        __data.append(
            ('page_size', self.get_page_size(self.request))
        )

        return sorted(__data)

Same applies to the customisations of the LimitOffsetPagination.