-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAssignment 6 code.Rmd
138 lines (98 loc) · 8.04 KB
/
Assignment 6 code.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
title: 'Assignment 6: Marketing Analytics'
author: "Preethi Abraham"
date: "29/04/2021"
output: word_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r}
# By Preethi Susan Abraham
library(shiny)
library(dplyr)
library(ggplot2)
#runExample("01_hello")
### the UI portion of your app
ui <- fluidPage(
titlePanel("Advertising Campaign Analysis App"),
sidebarLayout(
sidebarPanel(
radioButtons("questions","Analysis",c("campaign.winner","customers.interested.about.product","mean.rating.by.customers.willing.to.buy.product","customers.who.would.buy.from.brand.frequently","spend.more.on.this.brand.over.competitors","recommend.to.friends","never.buy.from.brand.again")),
br(),
"1:Overall impression of each campaign after seeing the product ",
br(),
"2:Customers who would be curious to know more about the product ",
br(),
"3:Mean rating given by customers who are willing to buy product",
br(),
"4:Count of customers who are willing to buy from the brand frequently",
br(),
"5:Count of customers who are willing to spend more on this brand over its competitors",
br(),
"6:Count of customers who would recommend product to their friends",
br(),
"7: Count of customers who would never buy from brand again"
#This closes sidebarPanel
),
mainPanel(
plotOutput("plot")
#Close mainPanel
)
#This closes sidebarLayout
)
#closes UI
)
### The server portion of your app
server <- function(input, output){
data <- read.csv("C:/Users/Preethi Abraham/Desktop/Brandeis Studies/Marketing Analytics/Assignment 6/20210407152446-SurveyExport.csv")
data=subset(data,data$New.Percent.Branch!="")
unique(data$New.Percent.Branch)
data1=data%>%filter(data$After.seeing.the.product..what.is.your.overall.impression.!="NA")%>%group_by(New.Percent.Branch)%>%summarise(mean(After.seeing.the.product..what.is.your.overall.impression.))
#since the overall rating is out of 7, we can say that 5 and 6 are very high scores given by customers
names(data1)[names(data1) == "mean(After.seeing.the.product..what.is.your.overall.impression.)"] <- "Mean.of.rating"
data2=data%>%filter(I.would.go.pick.up.the.product.to.find.out.more.about.it.Imagine.you.had.to.go.to.the.store.to.pick.something.up..While.you.were.at.the.store..you.saw.this.package.in.passing..How.likely.are.you.to.do.each.of.the.following.==c(5,6))%>%group_by(New.Percent.Branch,I.would.go.pick.up.the.product.to.find.out.more.about.it.Imagine.you.had.to.go.to.the.store.to.pick.something.up..While.you.were.at.the.store..you.saw.this.package.in.passing..How.likely.are.you.to.do.each.of.the.following.)%>%summarise(n())
names(data2)[names(data2) == "n()"] <- "Count.of.customers.who.gave.rating.of.5.or.above"
data3=data%>%filter(I.would.go.pick.up.the.product.with.the.intention.of.buying.it.Imagine.you.had.to.go.to.the.store.to.pick.something.up..While.you.were.at.the.store..you.saw.this.package.in.passing..How.likely.are.you.to.do.each.of.the.following.!="NA")%>%group_by(New.Percent.Branch)%>%summarise(mean(I.would.go.pick.up.the.product.with.the.intention.of.buying.it.Imagine.you.had.to.go.to.the.store.to.pick.something.up..While.you.were.at.the.store..you.saw.this.package.in.passing..How.likely.are.you.to.do.each.of.the.following.))
names(data3)[names(data3) == "mean(I.would.go.pick.up.the.product.with.the.intention.of.buying.it.Imagine.you.had.to.go.to.the.store.to.pick.something.up..While.you.were.at.the.store..you.saw.this.package.in.passing..How.likely.are.you.to.do.each.of.the.following.)"] <- "Mean.of.Ratings"
data4=subset(data,data$I.would.purchase.more.frequently.from.this.brand.After.seeing.the.product..which.of.the.following.would.you.do..1=="I would purchase more frequently from this brand")
data4=data4%>%group_by(New.Percent.Branch)%>%summarise(n())
names(data4)[names(data4) == "n()"] <- "Count.of.customers.who.would.purchase.more.frequently.from.brand"
data5=subset(data,data$I.spend.more.money.to.have.this.brand.over.a.competitor.After.seeing.the.product..which.of.the.following.would.you.do..1=="I spend more money to have this brand over a competitor")
data5=data5%>%group_by(New.Percent.Branch)%>%summarise(n())
names(data5)[names(data5) == "n()"] <- "Count.of.customers.who.spend.more.money.to.have.this.brand.over.competitor"
data6=subset(data,data$I.would.highly.recommend.this.brand.to.friends.After.seeing.the.product..which.of.the.following.would.you.do..1=="I would highly recommend this brand to friends")
data6=data6%>%group_by(New.Percent.Branch)%>%summarise(n())
names(data6)[names(data6) == "n()"] <- "Count.of.customers.who.would.recommend.brand.to.friends"
data7=subset(data,data$I.would.never.buy.from.that.brand.again.After.seeing.the.product..which.of.the.following.would.you.do.=="I would never buy from that brand again")
data7=data7%>%group_by(New.Percent.Branch)%>%summarise(n())
names(data7)[names(data7) == "n()"] <- "Count.of.customers.who.would.never.buy.from.brand.again"
ggplot(data7,aes(New.Percent.Branch,Count.of.customers.who.would.never.buy.from.brand.again,fill=New.Percent.Branch))+geom_bar(stat = "identity")+coord_flip()
campaign.winner<-data1$After.seeing.the.product..what.is.your.overall.impression.
customers.interested.about.product<-data2$I.would.go.pick.up.the.product.to.find.out.more.about.it.Imagine.you.had.to.go.to.the.store.to.pick.something.up..While.you.were.at.the.store..you.saw.this.package.in.passing..How.likely.are.you.to.do.each.of.the.following.
mean.rating.by.customers.willing.to.buy.product<-data3$Mean.of.Ratings
customers.who.would.buy.from.brand.frequently<-data4$Count.of.customers.who.would.purchase.more.frequently.from.brand
spend.more.on.this.brand.over.coompetitors<-data5$Count.of.customers.who.spend.more.money.to.have.this.brand.over.competitor
recommend.to.friends<-data6$Count.of.customers.who.would.recommend.brand.to.friends
never.buy.from.brand.again<-data7$Count.of.customers.who.would.never.buy.from.brand.again
observe({
if(input$questions=="campaign.winner"){
output$plot <- renderPlot({ggplot(data1,aes(New.Percent.Branch,Mean.of.rating,fill=New.Percent.Branch))+geom_bar(stat="identity",position = position_dodge())})
} else if(input$questions=="customers.interested.about.product") {
output$plot <- renderPlot({ggplot(data2, aes(New.Percent.Branch,Count.of.customers.who.gave.rating.of.5.or.above,fill=New.Percent.Branch))+geom_bar(stat = "identity",position = "stack")})
}else if(input$questions=="mean.rating.by.customers.willing.to.buy.product"){
output$plot<-renderPlot({ggplot(data3,aes(New.Percent.Branch,Mean.of.Ratings,fill=New.Percent.Branch))+geom_bar(stat = "identity",position=position_dodge())})
}else if(input$questions=="customers.who.would.buy.from.brand.frequently"){
output$plot<-renderPlot({ggplot(data4,aes(New.Percent.Branch,Count.of.customers.who.would.purchase.more.frequently.from.brand,fill=New.Percent.Branch))+geom_bar(stat="identity")+coord_flip()})
}else if(input$questions=="spend.more.on.this.brand.over.competitors"){
output$plot<-renderPlot({ggplot(data5,aes(New.Percent.Branch,Count.of.customers.who.spend.more.money.to.have.this.brand.over.competitor,fill=New.Percent.Branch))+geom_bar(stat="identity",position = position_dodge())+coord_flip()})
}else if(input$questions=="recommend.to.friends"){
output$plot<-renderPlot({ggplot(data6,aes(New.Percent.Branch,Count.of.customers.who.would.recommend.brand.to.friends,fill=New.Percent.Branch))+geom_bar(stat="identity")+coord_flip()})
}else if(input$questions=="never.buy.from.brand.again"){
output$plot<-renderPlot({ggplot(data7,aes(New.Percent.Branch,Count.of.customers.who.would.never.buy.from.brand.again,fill=New.Percent.Branch))+geom_bar(stat = "identity")+coord_flip()})
}
#close observe
})
}
shinyApp(ui = ui, server = server)
```