forked from time-series-foundation-models/lag-llama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.sh
43 lines (37 loc) · 1.78 KB
/
finetune.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# This script can only be executed once you have trained a model. The experiment name used for the trained model should be specified in line 4
CONFIGPATH="configs/lag_llama.json"
PRETRAINING_EXP_NAME="pretraining_lag_llama"
PERCENTAGE=100 # Change to lesser value to limit the history. Use 20, 40, 60, 80 to reproduce experiments in the paper.
for FINETUNE_DATASET in "weather" "pedestrian_counts" "exchange_rate" "ett_m2" "platform_delay_minute" "requests_minute" "beijing_pm25"
do
EXP_NAME="${PRETRAINING_EXP_NAME}_finetune_on_${FINETUNE_DATASET}"
# We reuse the same seeds as used for pretraining
FILENAME="experiments/seeds/${PRETRAINING_EXP_NAME}"
echo $PRETRAINING_EXP_NAME
# Get the seeds
if [ -f $FILENAME ]; then
echo "${FILENAME} found. Reading seeds."
SEEDS=()
while read -r LINE; do
SEEDS+=("$LINE")
done < $FILENAME
echo "Found ${#SEEDS[@]} seeds for finetuning."
else
echo "${FILENAME} does not exist. Cannot perform finetuning."
exit 0
fi
# Iterate through all training dataset
for SEED in "${SEEDS[@]}"
do
EXPERIMENT_NAME="${EXP_NAME}_seed_${SEED}"
python run.py \
-e $EXPERIMENT_NAME -d "datasets" --seed $SEED \
-r "experiments/results" \
--batch_size 512 -m 1000 -n 128 \
--wandb_entity "enter-wandb-entity" --wandb_project "enter-wandb-project" --wandb_tags "enter-wandb-tags-or-remove-this-argument" \
--num_workers 2 --args_from_dict_path $CONFIGPATH --search_batch_size \
--single_dataset $FINETUNE_DATASET \
--get_ckpt_path_from_experiment_name $PRETRAINING_EXP_NAME --lr 0.00001 --use_dataset_prediction_length --num_validation_windows 1 \
--single_dataset_last_k_percentage $PERCENTAGE
done
done