-
Notifications
You must be signed in to change notification settings - Fork 9
/
tabu_search.py
192 lines (148 loc) · 5.17 KB
/
tabu_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# -*- coding: utf-8 -*-
"""
Created on Tue May 8 15:55:33 2018
@author: polatbilek
"""
import math
from random import randint
import time
from random import shuffle
### Data Format is dict:
# data[node_name] = gives you a list of link info
# data[link_index][0] = name of node that edge goes to
# data[link_index][1] = weight of that edge
def read_data(path):
linkset = []
links = {}
max_weight = 0
with open(path, "r") as f:
for line in f:
link = []
tmp = line.strip().split(' ')
link.append(int(tmp[0]))
link.append(int(tmp[1]))
link.append(int(tmp[2]))
linkset.append(link)
if int(tmp[2]) > max_weight:
max_weight = int(tmp[2])
for link in linkset:
try:
linklist = links[str(link[0])]
linklist.append(link[1:])
links[str(link[0])] = linklist
except:
links[str(link[0])] = [link[1:]]
return links, max_weight
def getNeighbors(state):
#return hill_climbing(state)
return two_opt_swap(state)
def hill_climbing(state):
node = randint(1, len(state)-1)
neighbors = []
for i in range(len(state)):
if i != node and i != 0:
tmp_state = state.copy()
tmp = tmp_state[i]
tmp_state[i] = tmp_state[node]
tmp_state[node] = tmp
neighbors.append(tmp_state)
return neighbors
def two_opt_swap(state):
global neighborhood_size
neighbors = []
for i in range(neighborhood_size):
node1 = 0
node2 = 0
while node1 == node2:
node1 = randint(1, len(state)-1)
node2 = randint(1, len(state)-1)
if node1 > node2:
swap = node1
node1 = node2
node2 = swap
tmp = state[node1:node2]
tmp_state = state[:node1] + tmp[::-1] +state[node2:]
neighbors.append(tmp_state)
return neighbors
def fitness(route, graph):
path_length = 0
for i in range(len(route)):
if(i+1 != len(route)):
dist = weight_distance(route[i], route[i+1], graph)
if dist != -1:
path_length = path_length + dist
else:
return max_fitness # there is no such path
else:
dist = weight_distance(route[i], route[0], graph)
if dist != -1:
path_length = path_length + dist
else:
return max_fitness # there is no such path
return path_length
# not used in this code but some datasets has 2-or-more dimensional data points, in this case it is usable
def euclidean_distance(city1, city2):
return math.sqrt((city1[0] - city2[0])**2 + ((city1[1] - city2[1])**2))
def weight_distance(city1, city2, graph):
global max_fitness
neighbors = graph[str(city1)]
for neighbor in neighbors:
if neighbor[0] == int(city2):
return neighbor[1]
return -1 #there can't be minus distance, so -1 means there is not any city found in graph or there is not such edge
def tabu_search(input_file_path):
global max_fitness, start_node
graph, max_weight = read_data(input_file_path)
## Below, get the keys (node names) and shuffle them, and make start_node as start
s0 = list(graph.keys())
shuffle(s0)
if int(s0[0]) != start_node:
for i in range(len(s0)):
if int(s0[i]) == start_node:
swap = s0[0]
s0[0] = s0[i]
s0[i] = swap
break;
# max_fitness will act like infinite fitness
max_fitness = ((max_weight) * (len(s0)))+1
sBest = s0
vBest = fitness(s0, graph)
bestCandidate = s0
tabuList = []
tabuList.append(s0)
stop = False
best_keep_turn = 0
start_time = time.time()
while not stop :
sNeighborhood = getNeighbors(bestCandidate)
bestCandidate = sNeighborhood[0]
for sCandidate in sNeighborhood:
if (sCandidate not in tabuList) and ((fitness(sCandidate, graph) < fitness(bestCandidate, graph))):
bestCandidate = sCandidate
if (fitness(bestCandidate, graph) < fitness(sBest, graph)):
sBest = bestCandidate
vBest = fitness(sBest, graph)
best_keep_turn = 0
tabuList.append(bestCandidate)
if (len(tabuList) > maxTabuSize):
tabuList.pop(0)
if best_keep_turn == stoppingTurn:
stop = True
best_keep_turn += 1
exec_time = time.time() - start_time
return sBest, vBest, exec_time
## Tabu Search Takes edge-list in a given format:
#nodefrom nodeto weight
#0 1 5
#3 2 4
#1 0 3
#Undirectional edges should be written 2 times for both nodes.
maxTabuSize = 10000
neighborhood_size = 500
stoppingTurn = 500
max_fitness = 0
start_node = 0
solution, value, exec_time = tabu_search("\path\to\your\folder\test.txt")
print(solution)
print(value)
print(exec_time)