forked from hatsu3/Sanger
-
Notifications
You must be signed in to change notification settings - Fork 3
/
quant_utils.py
482 lines (407 loc) · 17.1 KB
/
quant_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
"""
https://github.com/IntelLabs/nlp-architect/blob/master/nlp_architect/nn/torch/quantization.py
"""
from enum import Enum, auto
import copy
import json
from abc import ABC, abstractmethod
import torch
from torch import nn
from torch.nn import functional as F
def get_dynamic_scale(x, bits, with_grad=False):
"""Calculate dynamic scale for quantization from input by taking the
maximum absolute value from x and number of bits"""
with torch.set_grad_enabled(with_grad):
threshold = x.abs().max()
return get_scale(bits, threshold)
def get_scale(bits, threshold):
"""Calculate scale for quantization according to some constant and number of bits"""
return calc_max_quant_value(bits) / threshold
def calc_max_quant_value(bits):
"""Calculate the maximum symmetric quantized value according to number of bits"""
return 2 ** (bits - 1) - 1
def quantize(input, scale, bits):
"""Do linear quantization to input according to a scale and number of bits"""
thresh = calc_max_quant_value(bits)
return input.mul(scale).round().clamp(-thresh, thresh)
def dequantize(input, scale):
"""linear dequantization according to some scale"""
return input.div(scale)
# TODO(ofir) future work, implement a layer that uses this function that gives a more comfortable
class FakeLinearQuantizationWithSTE(torch.autograd.Function):
"""Simulates error caused by quantization. Uses Straight-Through Estimator for Back prop"""
@staticmethod
def forward(ctx, input, scale, bits=8):
"""fake quantize input according to scale and number of bits, dequantize
quantize(input))"""
return dequantize(quantize(input, scale, bits), scale)
@staticmethod
def backward(ctx, grad_output):
"""Calculate estimated gradients for fake quantization using
Straight-Through Estimator (STE) according to:
https://openreview.net/pdf?id=B1ae1lZRb"""
return grad_output, None, None
class QuantizationMode(Enum):
NONE = auto()
DYNAMIC = auto()
EMA = auto()
_fake_quantize = FakeLinearQuantizationWithSTE.apply
class QuantizedLayer(ABC):
"""Quantized Layer interface"""
CONFIG_ATTRIBUTES = ["weight_bits", "start_step", "mode"]
REPR_ATTRIBUTES = ["mode", "weight_bits"]
def __init__(self, *args, weight_bits=8, start_step=0, mode="none", **kwargs):
if weight_bits < 2:
raise ValueError(f"weight_bits={weight_bits} must be higher than 1 ")
super().__init__(*args, **kwargs)
self.weight_bits = weight_bits
self.mode = QuantizationMode[mode.upper()]
self.start_step = start_step
self.register_buffer("_step", torch.zeros(1))
# buffers for inference
self.register_buffer("quantized_weight", None)
self.register_buffer("_weight_scale", None)
# handle import and export in 8bit
self.mode_8bit = False
self._imported_from_quantized = False
# register saving hook
self._register_state_dict_hook(self._state_dict_hook)
def forward(self, input):
if self.mode == QuantizationMode.NONE:
return super().forward(input)
if self.training:
if self._step >= self.start_step:
out = self.training_quantized_forward(input)
else:
out = super().forward(input)
self._step += 1
else:
out = self.inference_quantized_forward(input)
return out
@abstractmethod
def training_quantized_forward(self, input):
"""Implement forward method to be used while training"""
@abstractmethod
def inference_quantized_forward(self, input):
"""Implement forward method to be used while evaluating"""
@classmethod
def from_config(cls, *args, config=None, **kwargs):
"""Initialize quantized layer from config"""
return cls(
*args, **kwargs, **{k: getattr(config, k) for k in cls.CONFIG_ATTRIBUTES}
)
@property
def fake_quantized_weight(self):
return _fake_quantize(self.weight, self.weight_scale, self.weight_bits)
@property
def weight_scale(self):
return (
get_dynamic_scale(self.weight, self.weight_bits)
if self.training
else self._weight_scale
)
def train(self, mode=True):
"""handle transition between quantized model and simulated quantization"""
if self.training != mode:
if mode:
if self._imported_from_quantized:
raise RuntimeError(
"Model imported from quantized checkpoint cannot be moved to \
training mode"
)
self._train()
else:
self._eval()
super().train(mode)
def _train(self):
"""function to be called by self.train(mode=True) which modifies modules attributes\
according to the model"""
def _eval(self):
"""function to be called by self.train(mode=False), or eval() which modifies modules\
attributes according to the model"""
self._weight_scale = self.weight_scale
self.quantized_weight = quantize(
self.weight, self.weight_scale, self.weight_bits
)
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
"""check if model is loaded from quantized checkpoint or regular checkpoint"""
super()._load_from_state_dict(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
)
if state_dict.get(prefix + "quantized_weight", None) is not None:
if self.training:
raise RuntimeError(
"Can't load quantized model in training mode, first change model's \
to evaluation and then load the saved model"
)
self._imported_from_quantized = True
@staticmethod
def _state_dict_hook(module, state_dict, prefix, local_metadata):
"""hook to be registered to module when exporting the model to 8bit, can be overrided\
to customize to layer behaviour"""
if module.mode_8bit and module.mode != QuantizationMode.NONE:
state_dict.pop(prefix + "weight", None)
state_dict.pop(prefix + "_step", None)
state_dict[prefix + "quantized_weight"] = state_dict[
prefix + "quantized_weight"
].char()
else:
state_dict.pop(prefix + "quantized_weight", None)
state_dict.pop(prefix + "_weight_scale", None)
def extra_repr(self):
s = ""
for entry in self.REPR_ATTRIBUTES:
s += f", {entry}={getattr(self, entry)}"
return super().extra_repr() + s
class QuantizedLinear(QuantizedLayer, nn.Linear):
"""Linear layer with quantization aware training capability"""
CONFIG_ATTRIBUTES = QuantizedLayer.CONFIG_ATTRIBUTES + [
"activation_bits",
"requantize_output",
"ema_decay",
]
REPR_ATTRIBUTES = QuantizedLayer.REPR_ATTRIBUTES + [
"activation_bits",
"accumulation_bits",
"ema_decay",
"requantize_output",
]
def __init__(
self,
*args,
activation_bits=8,
requantize_output=True,
ema_decay=0.9999,
**kwargs,
):
super().__init__(*args, **kwargs)
if activation_bits < 2:
raise ValueError(
f"activation_bits={activation_bits} must be higher than 1 "
)
self.activation_bits = activation_bits
self.accumulation_bits = 32
self.ema_decay = ema_decay
self.requantize_output = requantize_output
self.register_buffer("input_thresh", torch.zeros(1))
if self.requantize_output:
self.register_buffer("output_thresh", torch.zeros(1))
# real quantization
if kwargs.get("bias", True):
self.register_buffer("_quantized_bias", None)
self.register_buffer("bias_scale", None)
def training_quantized_forward(self, input):
"""fake quantized forward, fake quantizes weights and activations,
learn quantization ranges if quantization mode is EMA.
This function should only be used while training"""
assert self.training, "should only be called when training"
if self.mode == QuantizationMode.EMA:
self._update_ema(self.input_thresh, input.detach())
input_scale = self._get_input_scale(input)
out = F.linear(
_fake_quantize(input, input_scale, self.activation_bits),
self.fake_quantized_weight,
self.bias,
)
if self.requantize_output:
if self.mode == QuantizationMode.EMA:
self._update_ema(self.output_thresh, out.detach())
out = _fake_quantize(out, self._get_output_scale(out), self.activation_bits)
return out
def inference_quantized_forward(self, input):
"""Simulate quantized inference. quantize input and perform calculation with only integer numbers.
This function should only be used while doing inference"""
assert not self.training, "should only be called when not training"
input_scale = self._get_input_scale(input)
self.bias_scale = self.weight_scale * input_scale
quantized_input = quantize(input, input_scale, self.activation_bits)
out = F.linear(quantized_input, self.quantized_weight, self.quantized_bias)
# TODO(ofir) fuse the operation of requantization with dequantiz
out = dequantize(out, self.bias_scale)
if self.requantize_output:
output_scale = self._get_output_scale(out)
out = dequantize(
quantize(out, output_scale, self.activation_bits), output_scale
)
return out
def _eval(self):
super()._eval()
if self.mode == QuantizationMode.EMA and self.bias is not None:
self.bias_scale = self._get_input_scale() * self.weight_scale
self.quantized_bias = quantize(
self.bias, self.bias_scale, self.accumulation_bits
)
@staticmethod
def _state_dict_hook(module, state_dict, prefix, local_metadata):
"""hook to be registered to module when exporting the model to 8bit,\
can be overrided to customize to layer behaviour"""
super()._state_dict_hook(module, state_dict, prefix, local_metadata)
if module.mode_8bit:
if module.mode == QuantizationMode.EMA:
state_dict.pop(prefix + "bias", None)
try:
state_dict[prefix + "_quantized_bias"] = state_dict[
prefix + "_quantized_bias"
].int()
except KeyError:
# in case there is no bias dont do anything
pass
else:
state_dict.pop(prefix + "_quantized_bias", None)
state_dict.pop(prefix + "bias_scale", None)
@property
def quantized_bias(self):
try:
if self.mode == QuantizationMode.EMA:
bias = self._quantized_bias
elif self.mode == QuantizationMode.DYNAMIC:
bias = quantize(self.bias, self.bias_scale, self.accumulation_bits)
else:
raise RuntimeError(f"Unknown quantization mode: {self.mode}")
except AttributeError:
bias = None
return bias
@quantized_bias.setter
def quantized_bias(self, value):
self._quantized_bias = value
def _get_input_scale(self, input=None):
return self._get_activation_scale(input, self.input_thresh)
def _get_output_scale(self, output=None):
return self._get_activation_scale(output, self.output_thresh)
def _get_activation_scale(self, activation, threshold):
if self.mode == QuantizationMode.DYNAMIC:
scale = get_dynamic_scale(activation, self.activation_bits)
elif self.mode == QuantizationMode.EMA:
scale = get_scale(self.activation_bits, threshold)
return scale
def _update_ema(self, ema, input, reduce_fn=lambda x: x.abs().max()):
"""Update exponential moving average (EMA) of activations thresholds.
the reduce_fn calculates the current threshold from the input tensor"""
assert self._step >= self.start_step
if self._step == self.start_step:
ema.fill_(reduce_fn(input))
else:
ema.sub_((1 - self.ema_decay) * (ema - reduce_fn(input)))
class QuantizedEmbedding(QuantizedLayer, nn.Embedding):
"""Embedding layer with quantization aware training capability"""
def training_quantized_forward(self, input):
"""Return quantized embeddings"""
assert self.training, "should only be called when training"
return F.embedding(
input,
self.fake_quantized_weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
def inference_quantized_forward(self, input):
"""forward to be used during inference"""
assert not self.training, "should only be called when not training"
q_embeddings = F.embedding(
input,
self.quantized_weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
return dequantize(q_embeddings, self.weight_scale)
class Config(ABC):
"""Quantization Configuration Object"""
ATTRIBUTES = {}
def __init__(self, **kwargs):
for entry in self.ATTRIBUTES:
setattr(self, entry, kwargs.pop(entry, self.ATTRIBUTES[entry]))
if kwargs:
raise TypeError(
f"got an unexpected keyword argument: {list(kwargs.keys())}"
)
@classmethod
def from_dict(cls, json_object):
"""Constructs a config from a Python dictionary of parameters."""
config = cls()
for key, value in json_object.items():
config.__dict__[key] = value
return config
def __repr__(self):
return str(self.to_json_string())
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
@classmethod
def from_json_file(cls, json_file):
"""Constructs Config from a json file of parameters."""
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
class QuantizationConfig(Config):
"""Quantization Configuration Object"""
ATTRIBUTES = {
"activation_bits": 8,
"weight_bits": 8,
"mode": "none",
"start_step": 0,
"ema_decay": 0.9999,
"requantize_output": True,
}
class QuantizedMatMul(nn.Module):
def __init__(self, quant_method, input_bits, start_step=0, ema_decay=0.9999):
super().__init__()
assert input_bits in [2, 4, 6, 8], f'QuantizedMatMul.input_bits must be chosen from [2, 4, 6, 8]. got {input_bits}'
assert quant_method in ['sym'], f'QuantizedMatMul.quant_method must be chosen from [sym, ]. got {quant_method}'
self.quant_method = quant_method
self.input_bits = input_bits
self.start_step = start_step
self.ema_decay = ema_decay
self.register_buffer("_step", torch.zeros(1))
self.register_buffer("input_x_thresh", torch.zeros(1))
self.register_buffer("input_y_thresh", torch.zeros(1))
def forward(self, x, y):
if self._step < self.start_step:
self._step += 1
return torch.matmul(x, y)
if self.training:
self._update_ema(self.input_x_thresh, x.detach())
self._update_ema(self.input_y_thresh, y.detach())
self._step += 1
x_scale = get_scale(self.input_bits, self.input_x_thresh)
y_scale = get_scale(self.input_bits, self.input_y_thresh)
out = torch.matmul(
_fake_quantize(x, x_scale, self.input_bits),
_fake_quantize(y, y_scale, self.input_bits),
)
return out
def _update_ema(self, ema, input, reduce_fn=lambda x: x.abs().max()):
"""Update exponential moving average (EMA) of activations thresholds.
the reduce_fn calculates the current threshold from the input tensor"""
assert self._step >= self.start_step
if self._step == self.start_step:
ema.fill_(reduce_fn(input))
else:
ema.sub_((1 - self.ema_decay) * (ema - reduce_fn(input)))
def build_quant_matmul(config):
quant_method = config.quant_qk['method']
bitwidth = config.quant_qk['bitwidth']
return QuantizedMatMul(quant_method, input_bits=bitwidth)