-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnrti2.tex
227 lines (183 loc) · 5.96 KB
/
nrti2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
\begin{frame}[allowframebreaks]
\frametitle{A New Perspective}
$$S:y^2 = 2s^4 + 8ms^2 + 16m^2 + 16m$$
\phantom{hi}
\includegraphics[width=\textwidth]{SPlot.png}
\framebreak
So far,
$$S:y^2 = 2s^4 + 8ms^2 + 16m^2 + 16m$$
\phantom{hi}
\includegraphics[width=\textwidth]{ECPlot.png}
\framebreak
$$S:y^2 = 16m^2 + (16+8s^2)m + 2s^4$$
\phantom{hi}
\includegraphics[width=\textwidth]{CSPlot.png}
\framebreak
This is a conic! $$y^2 = am^2 + bm + c$$
\phantom{hi}
\includegraphics[width=\textwidth]{CSPlot.png}
\end{frame}
\begin{frame}
\frametitle{Rational Projection}
For any $s$, we have
$$y^2 = 16m^2 + (16+8s^2)m + 2s^4.$$
\pause
\begin{center}
\includegraphics[width=0.5\textwidth]{s0Plot.png} \\
Example: $s=0$
\end{center}
\end{frame}
\begin{frame}
\frametitle{Rational Projection}
$$S: y^2 = 16m^2 + (16+8s^2)m + 2s^4$$
\pause
\begin{obs}
We're only looking for \textbf{rational} solutions.
\end{obs}
\pause
$$\mbox{Let }y = \frac{Y}{Z}\mbox{ and }m = \frac{M}{Z}.$$
\pause
\begin{defn}
The \textbf{homogeneous form} of $S$ is
$$S: Y^2 = 16 M^2 + (8 s^2 + 16) M Z + 2 s^4 Z^2.$$
\end{defn}
\end{frame}
\begin{frame}
\frametitle{Rational Projection}
If $Z=0$...
\pause
$$Y^2 = 16 M^2 + (8 s^2 + 16) M Z + 2 s^4 Z^2$$
\pause
$$Y^2 = 16 M^2 +\text{ \hcancel{\ensuremath{(8 s^2 + 16) M Z}}} + \text{ \hcancel{\ensuremath{2 s^4 Z^2}}}$$
\pause
$$ Y^2 = 16 M^2 $$
\pause
$$ Y=\pm 4 M$$
\pause
\begin{obs}
The point $[M:Y:Z]=[1:4:0]$ is a solution to the homogeneous form of $S$.
\end{obs}
\end{frame}
\begin{frame}
\frametitle{Rational Projection}
Geometrically, this is a line with slope $4$.
\begin{center}
\includegraphics[width=.6\textwidth]{s0AsymptotePlot.png} \\
Example: $s=0$ and $y=4m+2$
\end{center}
\end{frame}
\begin{frame}
\frametitle{Rational Projection}
To project from the point at infinity, take any line with slope 4.
\begin{center}
\includegraphics[width=.6\textwidth]{s0ProjectionPlot.png} \\
Example: $s=0$ and $y=4m+r_0$
\end{center}
\end{frame}
\begin{frame}
\frametitle{Rational Projection}
This intersects $S$ at a rational point:
\begin{center}
\includegraphics[width=.6\textwidth]{s0ProjectionIntersectionPlot.png} \\
Example: $s=0$ and $y=4m+r_0$
\end{center}
\end{frame}
\begin{frame}
\frametitle{Rational Projection}
Solving for this intersection point gives
\begin{align*}
m &= \frac{2 s^4-r_0^2}{8 r} \\
\mbox{and }y &= \frac{-4 + r^2 - 4 s^2 + s^4}{2 r}
\end{align*}
$\mbox{where }r=\left(r_0-s^2-2\right).$\\
\pause
So for every rational $r$ and $s$, we get rational $m$ and $y$ such that
$$ y^2 = 16m^2 + (16+8s^2)m + 2s^4 $$
\end{frame}
\begin{frame}
\frametitle{Rational Projection}
\begin{defn}
We define this projection as $$ \phi(r,s) = (m(r,s),y(r,s)) $$ where $$m(r,s)=\frac{-4 - 4 r - r^2 - 4 s^2 - 2 r s^2 + s^4}{8r},$$ $$y(r,s)=\frac{-4 + r^2 - 4 s^2 + s^4}{2 r} $$
\end{defn}
\end{frame}
\begin{frame}
\frametitle{Rational Projection}
This gives us a value for $m$. Defining $f$ requires $m$ and $\gamma$. Luckily, we've already seen an equation for $\gamma$.
\pause
\begin{defn}
\begin{align*}
\begin{split}
\gamma(r,s) = \pm\beta \left(- \frac{3 s^{6}}{16} - \frac{s^{4} m}{2} - \frac{s^{2} m^{2}}{2} - \frac{s^{2} m}{2}\right) + \frac{17 s^{8}}{64} + \frac{5 m}{4} s^{6} + \\ \frac{11 s^{4}}{4} m^{2} + \frac{7 m}{4} s^{4} + 2 s^{2} m^{3} + 2 s^{2} m^{2} - m
\end{split}
\end{align*}
where $m=m(r,s)$ is given by our projection.
\end{defn}
\end{frame}
\begin{frame}
\frametitle{Rational Projection}
\begin{example}
If $r=1$ and $s=1$,
$$\phi(r,s) = (m(r,s),y(r,s)) = \left(-\frac{7}{4},3\right)$$
and
$$\gamma(r,s) = \frac{1}{2}.$$
\pause
This gives the polynomial
\begin{align*}
f(x) &= \left(x-\frac{1}{2}\right)^2+\frac{1}{2}-\frac{7}{4} \\
&= x^2 - x - 1.
\end{align*}
\pause
This is the polynomial for the golden ratio!
\end{example}
\end{frame}
\begin{frame}
\frametitle{Rational Projection}
\begin{itemize}
\item<1-> Every newly reducible $f^3$ gives a point on $S$. \\
\item<2-> So by choosing all $(r,s)$, we get all newly reducible $f^3$. \\
\item<3-> However, we will also get some that are not \textbf{newly} reducible. \\
\item<4-> How can we ensure that we get a newly reducible $f^3$?
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Finding Newly Reducible Third Iterates}
Recall that
\begin{align*}
f\mbox{ is reducible } &\Leftrightarrow -m-\gamma\mbox{ is a square,} \\
\mbox{and }f^2\mbox{ is newly reducible }&\Leftrightarrow2(-m\pm\sqrt{m^2+m+\gamma})\mbox{ is a square.}
\end{align*}
So if we have a point on $S$ and neither $-m-\gamma$ nor $m^2+m+\gamma$ is a square, $f^3$ is newly reducible.
\end{frame}
\begin{frame}
\frametitle{Finding Newly Reducible Third Iterates}
\begin{align*}
\begin{split}
-m-\gamma &= \frac{1}{256 r^2} s^2 \left(r^2-2 (r+2) s^2+s^4-4\right)^2\left(4 + 2 r - s^2\right)
\end{split}\\
\begin{split}
\begin{tabular}{r}$m^2+m+\gamma$ \\ \vphantom{x} \\ \vphantom{x} \end{tabular} & \begin{tabular}{l}$=$\\ \vphantom{x} \\ \vphantom{x} \end{tabular} \begin{tabular}{r} $\dfrac{1}{256 r^2}\left(r-s^2+2\right)^2 (16 + 16 r + 4 r^2 + 32 s^2 + 32 r s^2$ \\ $ + 4 r^2 s^2 - 2 r^3 s^2 + 8 s^4 + 12 r s^4 $ \\ $ + 5 r^2 s^4 - 8 s^6 - 4 r s^6 + s^8).$ \end{tabular}
\end{split}
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Finding Newly Reducible Third Iterates}
\begin{align*}
\begin{split}
\left(4 + 2 r - s^2\right) \\
\phantom{x} \\
(16 + 16 r + 4 r^2 + 32 s^2 + 32 r s^2 + 4 r^2 s^2 - 2 r^3 s^2 + 8 s^4 + 12 r s^4 \\ + 5 r^2 s^4 - 8 s^6 - 4 r s^6 + s^8)
\end{split}
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Finding Newly Reducible Third Iterates}
\begin{align*}
\begin{split}
\left(4 + 2 r - s^2\right) \\
\phantom{x} \\
(16 + 16 r + 4 r^2 + 32 s^2 + 32 r s^2 + 4 r^2 s^2 \hunder{$- 2 r^3 s^2$} + 8 s^4 + 12 r s^4 \\ + 5 r^2 s^4 - 8 s^6 - 4 r s^6 + s^8)
\end{split}
\end{align*}
\pause
Let $r$ be "big enough"
\end{frame}