forked from pierotofy/OpenSplat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_trainer.cpp
140 lines (110 loc) · 4.66 KB
/
simple_trainer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#include <iostream>
#include <cmath>
#include <torch/torch.h>
#include <torch/cuda.h>
#include <opencv2/core/core.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include "vendor/gsplat/config.h"
#include "project_gaussians.hpp"
#include "rasterize_gaussians.hpp"
#include "constants.hpp"
#include "cv_utils.hpp"
using namespace torch::indexing;
int main(int argc, char **argv){
int width = 256,
height = 256;
int numPoints = 100000;
int iterations = 1000;
float learningRate = 0.01;
torch::Device device = torch::kCPU;
if (torch::cuda::is_available()) {
std::cout << "Using CUDA" << std::endl;
device = torch::kCUDA;
}else{
std::cout << "Using CPU" << std::endl;
}
// Test image
// Top left red
// Bottom right blue
torch::Tensor gtImage = torch::ones({height, width, 3});
gtImage.index_put_({Slice(None, height / 2), Slice(None, width / 2), Slice()}, torch::tensor({1.0, 0.0, 0.0}));
gtImage.index_put_({Slice(height / 2, None), Slice(width / 2, None), Slice()}, torch::tensor({0.0, 0.0, 1.0}));
// cv::Mat image = tensorToImage(gtImage);
// cv::cvtColor(image, image, cv::COLOR_RGB2BGR);
// cv::imwrite("test.png", image);
gtImage = gtImage.to(device);
double fovX = PI / 2.0; // horizontal field of view (90 deg)
double focal = 0.5 * static_cast<double>(width) / std::tan(0.5 * fovX);
TileBounds tileBounds = std::make_tuple((width + BLOCK_X - 1) / BLOCK_X,
(height + BLOCK_Y - 1) / BLOCK_Y,
1);
// torch::Tensor imgSize = torch::tensor({width, height, 1}, device);
// torch::Tensor block = torch::tensor({BLOCK_X, BLOCK_Y, 1}, device);
// Init gaussians
torch::cuda::manual_seed_all(0);
// Random points, scales and colors
torch::Tensor means = 2.0 * (torch::rand({numPoints, 3}, device) - 0.5); // Positions [-1, 1]
torch::Tensor scales = torch::rand({numPoints, 3}, device);
torch::Tensor rgbs = torch::rand({numPoints, 3}, device);
// Random rotations (quaternions)
// quats = ( sqrt(1-u) sin(2πv), sqrt(1-u) cos(2πv), sqrt(u) sin(2πw), sqrt(u) cos(2πw))
torch::Tensor u = torch::rand({numPoints, 1}, device);
torch::Tensor v = torch::rand({numPoints, 1}, device);
torch::Tensor w = torch::rand({numPoints, 1}, device);
torch::Tensor quats = torch::cat({
torch::sqrt(1.0 - u) * torch::sin(2.0 * PI * v),
torch::sqrt(1.0 - u) * torch::cos(2.0 * PI * v),
torch::sqrt(u) * torch::sin(2.0 * PI * w),
torch::sqrt(u) * torch::cos(2.0 * PI * w),
}, -1);
torch::Tensor opacities = torch::ones({numPoints, 1}, device);
// View matrix (translation in Z by 8 units)
torch::Tensor viewMat = torch::tensor({
{1.0, 0.0, 0.0, 0.0},
{0.0, 1.0, 0.0, 0.0},
{0.0, 0.0, 1.0, 8.0},
{0.0, 0.0, 0.0, 1.0}
}, device);
torch::Tensor background = torch::zeros(gtImage.size(2), device);
means.requires_grad_();
scales.requires_grad_();
quats.requires_grad_();
rgbs.requires_grad_();
opacities.requires_grad_();
torch::optim::Adam optimizer({rgbs, means, scales, opacities, quats}, learningRate);
torch::nn::MSELoss mseLoss;
for (size_t i = 0; i < iterations; i++){
auto p = ProjectGaussians::apply(means, scales, 1,
quats, viewMat, viewMat,
focal, focal,
width / 2,
height / 2,
height,
width,
tileBounds);
torch::cuda::synchronize();
torch::Tensor outImg = RasterizeGaussians::apply(
p[0], // xys
p[1], // depths
p[2], // radii,
p[3], // conics
p[4], // numTilesHit
torch::sigmoid(rgbs),
torch::sigmoid(opacities),
height,
width,
background);
torch::cuda::synchronize();
outImg.requires_grad_();
torch::Tensor loss = mseLoss(outImg, gtImage);
optimizer.zero_grad();
loss.backward();
torch::cuda::synchronize();
optimizer.step();
std::cout << "Iteration " << std::to_string(i + 1) << "/" << std::to_string(iterations) << " Loss: " << loss.item<float>() << std::endl;
// cv::Mat image = tensorToImage(outImg.detach().cpu());
// cv::cvtColor(image, image, cv::COLOR_RGB2BGR);
// cv::imwrite("render/" + std::to_string(i + 1) + ".png", image);
}
}