From 8e30f5ad0550b9619d95f307f534f620028c7559 Mon Sep 17 00:00:00 2001 From: Rupesh Shrestha Date: Tue, 12 Nov 2024 13:09:28 -0500 Subject: [PATCH] running cells --- book/tutorials/Geopython/Geopython.ipynb | 7478 +++++++++++++++++++++- 1 file changed, 7366 insertions(+), 112 deletions(-) diff --git a/book/tutorials/Geopython/Geopython.ipynb b/book/tutorials/Geopython/Geopython.ipynb index 3673bd0..4ff5f54 100644 --- a/book/tutorials/Geopython/Geopython.ipynb +++ b/book/tutorials/Geopython/Geopython.ipynb @@ -66,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "id": "phSPPyfyq2gX" }, @@ -96,11 +96,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "id": "Hfeg286yrLvJ" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3])" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "my_array = np.array([1, 2, 3])\n", "my_array" @@ -117,11 +128,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { "id": "wM-GYVMsrzNs" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3],\n", + " [4, 5, 6]])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "my_2d_array = np.array([[1, 2, 3], [4, 5, 6]])\n", "my_2d_array" @@ -138,11 +161,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "id": "4q8X86BbscPd" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "6" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# index using:\n", "# position_in_dim1, position_in_dim2\n", @@ -160,11 +194,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "id": "CrKnDAtyTlYe" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([4, 5, 6])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "my_2d_array[1]" ] @@ -180,11 +225,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "id": "MOOFsLHhTozX" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([3, 6])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "my_2d_array[:, 2]" ] @@ -200,11 +256,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "id": "pqlKtZ8ErgMY" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[1 2 3]\n", + " [4 5 6]]\n", + "[[1 2 3]\n", + " [4 5 6]]\n" + ] + } + ], "source": [ "print(my_2d_array[:, :])\n", "#is the same as\n", @@ -222,11 +289,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "id": "5QIo7l1Yr8m7" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(3,)\n", + "(2, 3)\n" + ] + } + ], "source": [ "print(my_array.shape)\n", "print(my_2d_array.shape)" @@ -261,11 +337,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "id": "4AoiRq42x5mI" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([5, 7, 9])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "array_a = np.array([1, 2, 3])\n", "array_b = np.array([4, 5, 6])\n", @@ -283,11 +370,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "id": "JoanjiMu1BH5" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.84147098, 0.90929743, 0.14112001])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "np.sin(array_a)" ] @@ -303,11 +401,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "id": "gvPe_JAO6mvF" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "array_a.transpose()" ] @@ -323,11 +432,50 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "id": "e24LPeHWbo-p" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,\n", + " 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,\n", + " 24, 25, 26, 27, 28, 29],\n", + " [ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,\n", + " 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,\n", + " 54, 55, 56, 57, 58, 59],\n", + " [ 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,\n", + " 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,\n", + " 84, 85, 86, 87, 88, 89]],\n", + "\n", + " [[ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,\n", + " 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,\n", + " 114, 115, 116, 117, 118, 119],\n", + " [120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,\n", + " 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,\n", + " 144, 145, 146, 147, 148, 149],\n", + " [150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161,\n", + " 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,\n", + " 174, 175, 176, 177, 178, 179]],\n", + "\n", + " [[180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,\n", + " 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203,\n", + " 204, 205, 206, 207, 208, 209],\n", + " [210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221,\n", + " 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,\n", + " 234, 235, 236, 237, 238, 239],\n", + " [240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,\n", + " 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263,\n", + " 264, 265, 266, 267, 268, 269]]])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Create a 3D array with values ranging from 0 to 269 with shape 3x3x30.\n", "array_3d = np.arange(270).reshape(3, 3, 30)\n", @@ -345,11 +493,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { "id": "Jc12K9dtcCb6" }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,\n", + " 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,\n", + " 24, 25, 26, 27, 28, 29],\n", + " [ 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,\n", + " 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,\n", + " 54, 55, 56, 57, 58, 59]],\n", + "\n", + " [[ 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,\n", + " 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,\n", + " 114, 115, 116, 117, 118, 119],\n", + " [120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,\n", + " 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,\n", + " 144, 145, 146, 147, 148, 149]]])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#dimensions separated by comma\n", "#1st dim - :2 indicates we want everything up to the 2nd coordinate i.e 0 and 1. Writing 0:2 would be equivalent\n", @@ -382,11 +553,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "id": "RV3RfR8Yj-XP" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "1 4.9 3.0 1.4 0.2 setosa\n", + "2 4.7 3.2 1.3 0.2 setosa\n", + "3 4.6 3.1 1.5 0.2 setosa\n", + "4 5.0 3.6 1.4 0.2 setosa\n" + ] + } + ], "source": [ "import pandas as pd\n", "\n", @@ -418,11 +602,42 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "id": "sPKQbPJXkqv8" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 5.1\n", + "1 4.9\n", + "2 4.7\n", + "3 4.6\n", + "4 5.0\n", + " ... \n", + "145 6.7\n", + "146 6.3\n", + "147 6.5\n", + "148 6.2\n", + "149 5.9\n", + "Name: sepal_length, Length: 150, dtype: float64\n", + "sepal_length 5.1\n", + "sepal_width 3.5\n", + "petal_length 1.4\n", + "petal_width 0.2\n", + "species setosa\n", + "Name: 0, dtype: object\n", + "sepal_length 5.1\n", + "sepal_width 3.5\n", + "petal_length 1.4\n", + "petal_width 0.2\n", + "species setosa\n", + "Name: 0, dtype: object\n" + ] + } + ], "source": [ "# Accessing a column\n", "print(df['sepal_length'])\n", @@ -446,11 +661,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "id": "neNkAFkBlJzc" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "5 5.4 3.9 1.7 0.4 setosa\n", + "10 5.4 3.7 1.5 0.2 setosa\n", + "14 5.8 4.0 1.2 0.2 setosa\n", + "15 5.7 4.4 1.5 0.4 setosa\n", + ".. ... ... ... ... ...\n", + "145 6.7 3.0 5.2 2.3 virginica\n", + "146 6.3 2.5 5.0 1.9 virginica\n", + "147 6.5 3.0 5.2 2.0 virginica\n", + "148 6.2 3.4 5.4 2.3 virginica\n", + "149 5.9 3.0 5.1 1.8 virginica\n", + "\n", + "[118 rows x 5 columns]\n" + ] + } + ], "source": [ "# Filter rows where 'sepal_length' is greater than 5\n", "filtered = df[df['sepal_length'] > 5]\n", @@ -472,11 +708,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": { "id": "vyx2_Bzfm453" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width species\n", + "0 5.1 3.5 1.4 0.2 setosa\n", + "5 5.4 3.9 1.7 0.4 setosa\n", + "10 5.4 3.7 1.5 0.2 setosa\n", + "14 5.8 4.0 1.2 0.2 setosa\n", + "15 5.7 4.4 1.5 0.4 setosa\n", + ".. ... ... ... ... ...\n", + "145 6.7 3.0 5.2 2.3 virginica\n", + "146 6.3 2.5 5.0 1.9 virginica\n", + "147 6.5 3.0 5.2 2.0 virginica\n", + "148 6.2 3.4 5.4 2.3 virginica\n", + "149 5.9 3.0 5.1 1.8 virginica\n", + "\n", + "[118 rows x 5 columns]\n" + ] + } + ], "source": [ "filtered = df.query('sepal_length > 5')\n", "\n", @@ -494,11 +751,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { "id": "-3V5leo-l-k4" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width\n", + "species \n", + "setosa 5.006 3.418 1.464 0.244\n", + "versicolor 5.936 2.770 4.260 1.326\n", + "virginica 6.588 2.974 5.552 2.026\n" + ] + } + ], "source": [ "# Group data by the values in 'species' and compute the mean of the other columns for each group\n", "grouped = df.groupby('species').mean()\n", @@ -507,11 +776,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": { "id": "ZBe3buVKmGB0" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "species\n", + "setosa 1.464\n", + "versicolor 4.260\n", + "virginica 5.552\n", + "Name: petal_length, dtype: float64\n" + ] + } + ], "source": [ "# or maybe we just want the aggregation of a single colmn\n", "petal_grouped = df.groupby('species')['petal_length'].mean()\n", @@ -529,7 +810,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": { "id": "UC2evyQspjlj" }, @@ -552,11 +833,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": { "id": "2gZiWSP7ml1E" }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " sepal_length sepal_width petal_length petal_width\n", + "species \n", + "setosa 5.313636 3.713636 1.509091 0.277273\n", + "versicolor 5.997872 2.804255 4.317021 1.346809\n", + "virginica 6.622449 2.983673 5.573469 2.032653\n" + ] + } + ], "source": [ "#lets do everything above in one step\n", "result = (pd.read_csv('https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw/0e7a9b0a5d22642a06d3d5b9bcbad9890c8ee534/iris.csv')\n", @@ -597,15 +890,97 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name_18MAPCODE18geometry
0Atlantis Sand FynbosFFd4MULTIPOLYGON (((18.73707 -33.68504, 18.73760 -...
1Atlantis Sand FynbosFFd4MULTIPOLYGON (((18.76015 -33.58306, 18.76066 -...
2Atlantis Sand FynbosFFd4MULTIPOLYGON (((18.64270 -33.50115, 18.64216 -...
3Atlantis Sand FynbosFFd4MULTIPOLYGON (((18.65830 -33.49548, 18.65885 -...
4Atlantis Sand FynbosFFd4MULTIPOLYGON (((18.67123 -33.49252, 18.67070 -...
\n", + "
" + ], + "text/plain": [ + " Name_18 MAPCODE18 \\\n", + "0 Atlantis Sand Fynbos FFd4 \n", + "1 Atlantis Sand Fynbos FFd4 \n", + "2 Atlantis Sand Fynbos FFd4 \n", + "3 Atlantis Sand Fynbos FFd4 \n", + "4 Atlantis Sand Fynbos FFd4 \n", + "\n", + " geometry \n", + "0 MULTIPOLYGON (((18.73707 -33.68504, 18.73760 -... \n", + "1 MULTIPOLYGON (((18.76015 -33.58306, 18.76066 -... \n", + "2 MULTIPOLYGON (((18.64270 -33.50115, 18.64216 -... \n", + "3 MULTIPOLYGON (((18.65830 -33.49548, 18.65885 -... \n", + "4 MULTIPOLYGON (((18.67123 -33.49252, 18.67070 -... " + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#we typically use the alias gpd\n", "import geopandas as gpd\n", "\n", "#read file\n", - "vegtypes = gpd.read_file('shared/users/gmoncrieff/data/swfynbos.gpkg')\n", + "vegtypes = gpd.read_file('/shared/users/gmoncrieff/swfynbos.gpkg')\n", "\n", "#view some rows\n", "vegtypes.head()" @@ -620,9 +995,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 MultiPolygon\n", + "1 MultiPolygon\n", + "2 MultiPolygon\n", + "3 MultiPolygon\n", + "4 MultiPolygon\n", + " ... \n", + "843 MultiPolygon\n", + "844 MultiPolygon\n", + "845 MultiPolygon\n", + "846 MultiPolygon\n", + "847 MultiPolygon\n", + "Length: 848, dtype: object\n" + ] + } + ], "source": [ "#the type of each geometry\n", "print(vegtypes.type)" @@ -630,9 +1024,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 3.631849e-05\n", + "1 8.440787e-03\n", + "2 3.851677e-05\n", + "3 4.072849e-04\n", + "4 1.907286e-04\n", + " ... \n", + "843 1.222378e-04\n", + "844 1.727596e-04\n", + "845 7.029317e-07\n", + "846 5.225343e-06\n", + "847 3.595376e-06\n", + "Length: 848, dtype: float64\n" + ] + } + ], "source": [ "#area of each polygon\n", "print(vegtypes.area)" @@ -640,9 +1053,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0 POINT (18.73293 -33.68426)\n", + "1 POINT (18.74816 -33.63233)\n", + "2 POINT (18.64129 -33.49871)\n", + "3 POINT (18.65163 -33.50852)\n", + "4 POINT (18.66857 -33.48504)\n", + " ... \n", + "843 POINT (18.88481 -34.21236)\n", + "844 POINT (18.87599 -34.17239)\n", + "845 POINT (19.00402 -34.07498)\n", + "846 POINT (18.98670 -34.04231)\n", + "847 POINT (18.98381 -34.03586)\n", + "Length: 848, dtype: geometry\n" + ] + } + ], "source": [ "#centroid of each polygon\n", "print(vegtypes.centroid)" @@ -657,9 +1089,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "\n", + "Name: WGS 84\n", + "Axis Info [ellipsoidal]:\n", + "- Lat[north]: Geodetic latitude (degree)\n", + "- Lon[east]: Geodetic longitude (degree)\n", + "Area of Use:\n", + "- name: World.\n", + "- bounds: (-180.0, -90.0, 180.0, 90.0)\n", + "Datum: World Geodetic System 1984 ensemble\n", + "- Ellipsoid: WGS 84\n", + "- Prime Meridian: Greenwich" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "vegtypes.crs" ] @@ -673,9 +1126,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Name_18 MAPCODE18 \\\n", + "0 Atlantis Sand Fynbos FFd4 \n", + "1 Atlantis Sand Fynbos FFd4 \n", + "2 Atlantis Sand Fynbos FFd4 \n", + "3 Atlantis Sand Fynbos FFd4 \n", + "4 Atlantis Sand Fynbos FFd4 \n", + "\n", + " geometry \n", + "0 MULTIPOLYGON (((18.73707 -33.68504, 18.73760 -... \n", + "1 MULTIPOLYGON (((18.76015 -33.58306, 18.76066 -... \n", + "2 MULTIPOLYGON (((18.64270 -33.50115, 18.64216 -... \n", + "3 MULTIPOLYGON (((18.65830 -33.49548, 18.65885 -... \n", + "4 MULTIPOLYGON (((18.67123 -33.49252, 18.67070 -... \n" + ] + } + ], "source": [ "#select first 5 rows\n", "print(vegtypes.iloc[0:5])" @@ -683,9 +1156,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Name_18 MAPCODE18 \\\n", + "408 Hangklip Sand Fynbos FFd6 \n", + "409 Hangklip Sand Fynbos FFd6 \n", + "410 Hangklip Sand Fynbos FFd6 \n", + "411 Hangklip Sand Fynbos FFd6 \n", + "412 Hangklip Sand Fynbos FFd6 \n", + "\n", + " geometry \n", + "408 MULTIPOLYGON (((19.11537 -34.35930, 19.11566 -... \n", + "409 MULTIPOLYGON (((18.83174 -34.33894, 18.83178 -... \n", + "410 MULTIPOLYGON (((18.82974 -34.33846, 18.83046 -... \n", + "411 MULTIPOLYGON (((18.99561 -34.34287, 18.99561 -... \n", + "412 MULTIPOLYGON (((18.99545 -34.34217, 18.99542 -... \n" + ] + } + ], "source": [ "#filter to a single vegtypes\n", "print(vegtypes.query('Name_18 == \"Hangklip Sand Fynbos\"').head())" @@ -701,9 +1194,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAGdCAYAAAAhXxuJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXhcVfrA8e8dtyQT9zRad3ehheJuxRZ39ocusCy2u+giizuLOwVaKNCWUtpS6t60jTTumSQzGbf7+2PapCHSFpLUzud58jRz58q5kybvPfYeSZZlGUEQBEEQDhnFoS6AIAiCIBzrRDAWBEEQhENMBGNBEARBOMREMBYEQRCEQ0wEY0EQBEE4xEQwFgRBEIRDTARjQRAEQTjERDAWBEEQhENMdagLcCgEg0EqKysJCwtDkqRDXRxBEAThMCXLMs3NzSQlJaFQ9Fz99ZgMxpWVlaSmph7qYgiCIAhHiLKyMlJSUnrs/MdkMA4LCwNCH254ePghLo0gCIJwuLLZbKSmprbEjZ5yTAbjvU3T4eHhIhgLgiAI+9XTXZpiAJcgCIIgHGIiGAuCIAjCISaCsSAIgiAcYiIYC4IgCMIhJoKxIAiCIBxiIhgLgiAIwiEmgrEgCIIgHGIiGAuCIAjCISaCsSAIgiAcYiIYC4IgCMIhJoKxIAiCIBxiIhgLgiAIwiEmgrEgCIIgHGIiGB/hSrZsYtWXn+CyNx/qogiCIAh/0DG5hOLRomjTer5+8p8EAwGsdbWMPfNczPGJPb7UlyAIgtC9JFmW5UNdiN5ms9mIiIjAarUekesZO5oaWTt/Luu//arde1qDkdnX/x854yYegpIJgiAcXXorXoia8RFGlmXmP/s4FTu3d/i+x+lgwUtPM6WhnuzR4wmPjevlEgqCIAgHS/QZH0FkWebnd1/vNBDv5fd4+Pmd1/n04XvZsWIpTpu1l0ooCIIg/BEiGB+mKvN2Ur5jW5tt9gYL25YsOuBz2OpqWPDCU8x7+lEs5WXdXURBEAShm4hgfJha/dWnfPrQPexcuaxl2+ZFC/B53GSOHIPWaIQDHKhVsXM7X/z7PurLSnqquIIgCMKfIILxYaappprVX31Gc30dAGu/+RI5GATA63YBEJPah5vf/pSsUWMBGHXqWQyYMqPL89obG/jmqX+3nEMQBEE4fIhgfJhpqqlixSfvUVdaDEBtcSGrv/4cgGmXXMnlT7/M+HMuBECjN2A0RzJlzmW4DqBf2FpTQ3VBfo+VXRAEQfhjxGjqw8j3Lz1D7rIl7bYbzZEAKFVqolPSAKgvK2HUKWeSM3YCDZUV1BQVdnpelVqDwRyJs6mRn956GVNUFOGxCYRFRzPh3IvEvGRBEIRDTATjw4Qsy2QMH0XB2lV4Xc6W7QnZfRk4tW0TtM/j5ud3Xqd022YAJEmBLAc7PK8uLJwz7vg7KQMGU1NUSOG6Vaz55gtKt20BICw6liHHndBDdyUIgiAcCNFMfZiQJIn+k6aRMXxUyzZdWDhn3nU/SpW6ZZujqZH/3X5DSyAGOgzE4bHxpA4ayik330HKgMEAxGdkMfG8iznzrvvRmcIAWPj6C3z52IM9dVuCIAjCARA148OMpGh9PpKDASrzdpA1ehwKhRJLeRkLX3u+ZXBXZ+Iysrjwn0+i1mjbvedxOnDZm7nw4Sf55YO3UKpUFKxdhbW2moi4hG6/H0EQBGH/RM34MBLw+yjL3dry2uNwMO/pR6kt2k1dSREf3nc7lXk7ujzHuLMu4KJ/P9UmEHvdLoKBAHMff4iXrpqDtbqK6JRUpl1yJbb6OrQGI5sWLuix+xIEQRC6JmrGh5Eti3/A0djQZpskKVjzzecUrltNMBDo8nhJoaC6MI/CdavpO34yEKoJv3z1xUTEJ9BYVUFsWjqjTjlz78mp3TPwK3fZEqZefIUYzCUIgnAIiGB8mCjfsY0l77yOKToGu6W+ZbssB8lfvbLLY5UqFZc8/hyVeTsYOvPElnnJEFo4YuZVNxCTmoZSrcEQEYFapwPgpzdfbtnPaW2ieNN6MkaM7uY7EwRBEPZHNFMfJuIzs7nqv68z/PiTO91HazAy9oxz6T9pGhAKwikDBjPz6huJSe3D0JknsnvDWl688gJ+fPX5luOGzpxNfGY2yDKrvviE5R+9Q0NlRZsmcYDFb71CwO/rmRsUBEEQOiVqxocJtVaHOSGRhspyBk49DlNkFGu++aLlfWNkFBc+9AT15aWsmfcl5oRELnrkGfR7RkWXbtuCRqdj/rOPYzSbMce3HYy18Ydv+eX9twAYcdJp7fJeQyiX9dp5cxl/9gU9eKeCIAjC74lgfJjw+3xIkoQpMoqYtHQCPh+RiUlEJqVgjDAz4/JrUWt17Pz1F2ZddQM5YyeiN4Xh9/nYuuRHVnz8LqbIaAbPOJ6RJ55GMNi2f1kfFk5EfALWmmpGnHgau35d1mE5fv3sAxJz+tFnyPBeuGtBEAQBRDA+bKjUauY98yipA4fQd/wkHI2NZI0ehz6s7WLWxsgoSrZsZNjxJ1O8aT2L3nwJW10tmSPHcMZd/0ChUPLunTehNRq54MHH8bic6IwmBk2bSd/xk1jwwlP4vV52b1jbcUFkmW+eeoQJ584hY9hIYtLSe/7mBUEQjnEiGB9GTvnrXS0JPsJj41q2u5ptrPryE/oMHYE+LJyCdauoKSrgm2cexe/xAFBTVMjaeXMZe8a5JPcfxOZFC3jr1muRg0GuefFtINQUfsr/3Y0kSZ1m7JIUCiadfwl1pUUoFEoRjAVBEHqBCMaHkX0zbdnqa1n63pvIQZmSrZvwuV24mm0cf+0tDJ5xAjtXLMXv8aA1GvE6XTgaG1jx8bsEA37Sh41k86IFWGuqQZJwO+zojCYgVAMHyBo9nurC9otGyMEgu1YuIy4ji+wx43vnxgVBEI5xYjT1YaihsoJvnnqE6oJ8Zt/wf2SOHANAbfFukGVmXXUDTqsVozmSG9/4iMufCU1RkhQK7BYLiTn9iNg7gEuWqcrf1e4ao04+A4Wy42cxe2MDUy66nLDomJ65QUEQBKENEYwPMyVbNvHe326mtqgQfXg48595jIbyUgAmXXhpyxxht8OOo6mR3RvXAa2JOqKSUzGaI8kY3jpfOG/VinbXUet0jDrljA7LEJWcgtZgQKFUduOdCYIgCJ0RwfgwkzZ4KBGx8QDUFhVSum0zAb+fQdNmkZCVA8Cvn75Pxc5cFEoVYVHR/PL+m0AoW5daF0qDmTFiFGmDh6LR6ylY8xvODtY7nnjexfQZOqLddqVK9F4IgiD0JvFX9zAjKRQcf+3NNFZVEhYdQ0xaOqbIKACaG+oJBgP0nzSdSRdcihwM4vO42b1xHYYIM2fd/WBLwM4cMYbMEWMI+P00VJS16Y/eS6XRMPrUsyjZsrHNdpe9GQj1H++7cIUgCILQM0QwPgylDBhMyoDBBPw+Nv34HWExseSMnciHf78dj92O3+clY/gotEYT48+Zw4BJ05hw3kVEJiQhB4M0VJYT8PuJS8+kdNtmFr/5MmNOP4f+E6eiM5naXKvP0BGYoqKxN1hattkbLNTsLsAQYcZojhTN1YIgCD1MBOPD2JK3X2PLTz+g1ulprKzA0diA1mAke+wEynO3MvXSq4hOTuHkW+4EQjXZ4s3r2frzIuRgkDPu/Ae1xbux1dXw01svs3XJj5z3j0faBGRJkohOSWsTjPVh4aH0mYIgCEKvEMH4MBaVnMKFDz/JJw/+jS0//chxV17P4BnHo9ZoyV22hPiMtgFTUihIGTSUxuoqTJHRACT3HUC/iVNRqlSUbNnIV0/+k6kXXY4pKgqtwYTT1kRjVWWb8+SMndhr9ygIgiCAJMuyfKgL0dtsNhsRERFYrVbCw8P3f8AhJMsyVfk7ic/MOeCBVU5rE7IsYzRHttlura3hg3tvxb2nT7gzCVk5XPDwky1zkgVBEI5VvRUvxOicw5TbbsfrdiFJEkl9B7QLxEUb1/Hrp+8T8Pv46sl/8tE/7sDrduF1OVv6evfa9vMidvz6CxFx8Zx8y53owsJRqtVo9AYAErL7Mvq0s0nuPwgAjd7AwteeRxAEQegdopn6MKVQKrA3WIhKSmn3nt/rZcFLz+ButrFp0feEx8Qy4dyLeP/uv+JxOEjqN4DUgUOIS88kddBQ+k6YjM/jZf6zj4MkoVAoSMzux8m33IlSpUJSKtGbwvC53dSWFLHh+3nsWP4zaYOGMmDK9A5HYguCIAjdRwTjw5RGbyBqT811L1mW+emtV6gvK8bdbEOhVKJUKvG5XWQMH8myD5W47M0UrltN4brVKJRKTvnrXfQdPxmXzcqQ407A63Zht9RTvmMb67/7mumXXQ3Aj68+R2NVBU3VVTiaGlu27fj1F875+8MoFGJEtSAIQk8RwfgI4LI3ozeF0VBRRsnWjVzy2HPYG+oxmqNQqlX88PJ/yV3+Mxqdjhvf+BBrbQ3BgJ+P77+Ln95+FUdTI8NnnwrAghefIXnAICrzdlBXsrvlGtMvu5r3/nZLSyDeq3TrJr585AGmX3Y1sX0yevW+BUEQjhUiGB8B3M029KYwopJTabbUs/KzD5hx+bUt79sbLGz7eTGpg4aiDwtHHxbOkndeA0KDuZb87zUUShX2xgZSBw5mx4qlAFQX5lO0cR2VeTvQ6A3M+Mu15K9ZScaI0SRk5vD2bdchB4OUbtvMJw/ezRXPvIIpKrrjMtrt7eYwC4IgCAdGBOMjwL59tpPOvwRTdAzv3XUz/SZNw1ZXQ0xqHwxmMzpjGABrvvmChMwc4jNzGDh1Bss/fIfKXbnYLHX43G5sdbUAeF0u5j7+UOgaajXXv/Z+y0pNzZZ65GCQoTNPpHTbZppqqlj05kucedf9SJLUpnxet4vC9asZNG1mL3wagiAIRx8xmvoIYIg0EwwGCPj9jDn9HGJT+xAWE4vRHMnWnxYy+rSzyF+9kobKMjZ8Px9bXS3hsXFo9HoGTZvF1S++xYk33c759z9KztiJjD/nQgZNm8n0y65BqVKhUKoI+Hy8e+dN+NxuIJQMJHvMeJL6DWDOv59Cozewe/0aFr3+AuW523A121rKV7O7gLiMrEP18QiCIBzxRM34CPDrJx+wYcE3jD7tbCZdcAkxaekk5vQnuf9AZDnIR/ffhbvZhqW8lLiMLBJz+hOTmk5Z7lY2/fgt4846H4BlH73D2nlfolJrmHnVDWSPncCmhd9y5l0PoNZqkeUgap0On8eNjIwsg0KhQK3VMnj6LDZ8P4+tSxaydclCUgYO5oIHHwfA7/Fg6GDUtyAIgnBgRM34COBobCAYCLDm68/578Vnsf67bxh/9gVEJiSRM24i7j211FlX38Rpt91L5c7tlOVuIbnfQEafdhZOm5WaokLWzp8LgN/n5bcvP2bd/K9wWq3UFhUQHhtHRFwCZblb+ezhe7FbLJx88+30nzydmsIChsyc3aZM5bnb8DidAFTsykWt1fbuhyIIgnAUETXjI4Ctvq7lezkYZN38LylY+xsn33Inx197C/mrVwKw9N03GH/uHJL6D6J02xZqdhfw6rWXojOFkTpoCPEZ2bjtNhRKFZMvvJTdG9ehM5lY9MZLlG7fSlK//vz2xcfIsow5MaklKYhCpWTh6y+g0mjxez0tZVnxybvEpmXg93pRimxdgiAIf5gIxkcAS3lpm9f2xgbsjQ2s+eYLMkaMatnu93kpXLsKhUpJxc5copJSMEXH0FhVwfHX3NyyHOLekc99x0+mPHcb37/8LPlrfkWS4IRrb6HP0BFtBmlFp/TBVlfL7Bv+jw3fzyNlwGBGnXwGNbsLCPh8jD/7QpEYRBAE4U8QwfgwJ8syHoejzTaFUkUw4GfTj9+y6cdvW9+QJIbMnE3BulVEJibTbKnnpJvvCAVzSaJmdwFr589FHxZOxa5c5vzrPxijogj4fag1WiZfeBmGCHO7MmgNBq57+R0khYL+E6e2bM8cOaanblsQBOGYIvqMDxE5GKRg7SpWf/15m5HJv+d1OZHlIBDKyjXs+JO46vk3SO4/sIOTyix87XnKc7eS1HcAPo+bD/9+Gx6HnYDPR2NVBSVbNrLpx2+pK97Nwlef56vHH8bjdGBvbKBg3epOy7G3Vi0IgiB0P1Ez7kV+r5fy3K0UbVpPwbrV2OpqAFj/3dfM+eeTRCYmtzvGVleL0RyJRm9g9g23ktxvAEC72jKAMTIKndGEpbyU7b8sJjw2jtPvuI+49EwkSSJrzHhWzf2UYCCA1+Vk56+/tBwrKRT0GTKsh+5cEARB6IoIxr2kbPsW5j7+cJsBUHu5bFbm//cJLn7k6XZ9r7F9Mrjw4SdR6/WUbd9Kze4CYtMzUOt0AEw49yJ0pjCWf/QOY047h12rlpPUdwBqnY4J517EjuVLMMcnoDUYcVmtzLrmZrYtWUhDZRkNleUMnnECfo+HxJx+RMQl9MpnIQiCILQl1jPupfWMl77/Fuu//arLfaZcdDljzzi33faP/nEHSf0GYo5PxFJeikKhYMP38zBGRuGy2QgG/OSMm4jdYsHZbEVvCqPZUo/P4yEhuy8A4848n9xlPxGVnIrOaGLorBMBCPj9KFUqZFlul1lLEAThWCfWMz5KBPx+VnzyPhu++2a/+66a+ynW2po22xqrK6kuyCfg81FXWkx1YR7GqGimXHw5g6Ye15Iruv/Eqcz591Nc/fybpAwcgqOpkX4Tp3Darfdgioxi4WvPkTZkOGPPOLclEAMt6ySLQCwIgnDoiGDcg9wOO588+DdWf/VpyyCsrvjcoVzRNUWFAFhrq5n/zGPIcpDKvJ1IkkREXAJFG9aiUCgZOG0mJ1x3CwDzn32c5y45i1VffoLT2oQ+PIKqvJ2sX/A14TGxhMXEsubrz5GD+y+HIAiC0LtEM3UPNTvIwSBzn3iY4k3rD/5gSSJzxGgaKstpqq5q2azW6Rk49Th2b1iDRqcnOrUPjVUV1BXvbnO4Wqfn7HsepK6kiH4Tp7J96WK2/bwIe2MD17/+PmqNyJYlCIJwIHqrmVoM4Ooheat//WOBGECW2b1hbbvNPrcLR1Mj9gYLcjDYLhnIXmqtluqCPFzNNr797xOUbd8CQN/xk0UgFgRBOAz1aDP16aefTlpaGjqdjsTERC699FIqKytb3rdYLJx44okkJSWh1WpJTU3l5ptvxmbrfN4tgMfj4ZZbbiEmJgaj0cjpp59OeXl5T97KQZFlmVVfftIj53bbm9v17+qMJiL3LNQw6+obueKZV0kdNJRRp57VZgrUwKkzeqRMgiAIwp/To8F4xowZfPbZZ+zatYsvv/ySwsJCzj23dbSwQqHgjDPOYN68eeTl5fHOO++wePFirr/++i7Pe+utt/LVV1/xySefsGLFCux2O6eeeiqBQKAnb+eA+b0e6stKeuTcSqWyzXxkc0IiJ91yB5c+8RyGCDMpA4egM5mIz8xGo9Nz3v2PMOPya1GqVESn9OmRMgmCIAh/Tq/2Gc+bN48zzzwTj8eDupOFBZ5//nn+85//UFZW1uH7VquV2NhY3n//fS644AIAKisrSU1NZcGCBcyePbvD4/bVG30Ab/3fNW36e7tDeGwcYdGxVOzcjlqr4+LHniU6ObXl/c8evpeo5BSyRo9HoVRStHEttvo6jOZIdixfyrUv/69l8QdBEARh/466PuOGhgY+/PBDJk6c2GkgrqysZO7cuUybNq3T86xfvx6fz8cJJ5zQsi0pKYnBgwezcuXKDoOxx+PB42lNtrG/ZvDukDpoaLcGY7VOj9/rpSp/JwBpQ4YT9bs1hPXhEWxe9D2bF33f7niFUonTahXBuBPFLg+pOg1KMcVLEIRDoMenNt19990YjUaio6MpLS3lm2/az7edM2cOBoOB5ORkwsPDefPNNzs9X3V1NRqNhsjIyDbb4+Pjqa6u7vCYxx57jIiIiJav1NTUDvfrTvqw7n2CSszui9PaRHBPU7y9ob5d33FcemaX5yjdvrlby3Q0ebigEqv/8OjmEATh2HPQwfihhx5CkqQuv9atW9ey/1133cXGjRtZuHAhSqWSyy67jN+3jD/77LNs2LCBr7/+msLCQm6//faDvpGuMkjde++9WK3Wlq/OmsC7U3f3GQd/1x+emNO/zecY8PvY8tMPLa9zxk5k0vmXEBYdy7RLr+KiR56haOMfHN19lNlhd3HbzlLuzStnh92FLMv8KzuJrc2uQ100QRCOUQfdTH3zzTdz4YUXdrlPenp6y/cxMTHExMTQt29fBgwYQGpqKqtWrWLChAkt+yQkJJCQkED//v2Jjo5mypQp3H///SQmJrY7d0JCAl6vl8bGxja149raWiZOnNhhebRaLVpt703pCQYDVObt7NZzVuzKbfN604/f0myp46Sbbket07H84/ew1dUCbdNqjjv7AiRJorZ4Nx6HvVvLdKT6uKqBny3N9DVq+cliY4PNiSsYZH5tE9Oiwg518QRBOAYddDDeG1z/iL01uX37bw92n1GjRqFWq1m0aBHnn38+AFVVVWzbto0nn3zyD5WruzVWVuDuYlnEP6KjzFmF61bz6nWXodbpcNmsIEmcfNPt9J88neItGzGER7Q0XZfnbsVgjmx3jmPRP3OSeTg7qaUlpcjpocDppsHnP8QlEwThWNVjA7jWrFnDmjVrmDx5MpGRkezevZsHHniArKysllrxggULqKmpYcyYMZhMJnJzc/nb3/7GpEmTWmrXFRUVzJw5k/fee4+xY8cSERHBVVddxR133EF0dDRRUVHceeedDBkyhFmzZvXU7RyUhorem/Ps93paVoIae/o5DJgyg50rl/HzO6+TNngYUy++Aq/LRdHmDZxxx329Vq7D3d5A7AwE+bq2kRNiIuij1+IPyqgUYhCXIAi9q8eCsV6vZ+7cuTz44IM4HA4SExM58cQT+eSTT1qajPV6PW+88Qa33XYbHo+H1NRUzj77bO65556W8/h8Pnbt2oXT6WzZ9uyzz6JSqTj//PNxuVzMnDmTd955B6VS2VO3c1BKtm46JNftO34yhevX4LQ2MemCS4hKSsHR2EDx5g1Mv/RqVBrNISnX4aLa46PR50chScRqVNyfX8G4CCOuQJBGr59NNieVHi9pepGlTBCE3iVyU/fAvLHXb7yCZktdt593f6KSUphxxXWkDx3Rsk2WZSp2bidlwOBeL8/hwhkI8mRRFb6gzHHR4fzaaEetkIhSKajy+nm7vJ40vYb3h2SSrteIFawEQWhx1M0zPla47M2HJBADNFSW01Be2iYYS5J0TAdiAJ1C4h+ZSS3NzzOjw/EGg9ydV87HVQ0AWP0Brt1ezGfDs4hUi18LQRB6l/ir082s3Zx162DtmypTCFFIEr/vBn6yqJplDc1cmRxDhEpJscvDV7VNLG1o5qx4MdBNEITeJYJxN5M5dK3++vAIEnP6H7LrHwk8wSD/yK+g3uvnx9H9iNGo2GBz8HRRDeMjjEw0mw51EQVBOAb1eAauY40h3HxIrqvR67n8qZfQmUQw6cpOh5spkWH8b0gGMRoV/qDMRpuTD4ZmcGlSNN/XWw91EQVBOAaJmnE3C4uJQaXV4u9iLnV3U6k1nHf/oxgizL12zSNVtkFLvKY1N/qCeisnxkRwf0EFGknBHRnxh7B0giAcq0TNuJspFEpyxkzY/47dSK3X01RT1S7NqNCeUakkQRsKxkFZptkfYJfDzVvl9QSRKXD23kOUIAjCXiIY94CxZ57XexeTJEbMPpV+4yeLKTkHaWWTnRNiwnmnoh6tQmKt1cGczYXssIsc1YIg9C4RjHtATGofkvsPbHltioxCo9d3+3UUSiWn3Xo3E86dg6QQP8oDVePxUeh0E6FScumWIhZabJiUSi5JimZaZBgbm537P4kgCEI3En/Be8i+o5pPuO6vjD717G6/xuQLL6Pv+Mndft6jnVGpoMDpYafDzaY9gffvWYnIMlh8fuxiKUVBEHqZCMY9RKVuHSQUmZhMVHL3r6Eck9qn2895LNApFHxYaaHE5W3ZlqXXolJIKCWJ/sbub8UQBEHoihhN3UMcTY0t3+/esAZLRfevofzLB29TV1pMXHom6cNGdvv5j1YqhYRPlnm6uLpl24MFleQYteQ53KjFQhGCIPQyEYx7SHVhfsv3P7/7Ro9cw1JeyvKP3kGt03Phw0+0LJcodC0oy/zS0NwmPUuVx8v1qbHMiAqn2uM7ZGUTBOHYJJqpe4jbbu+1aw2cMl0E4oPwXZ0VjUJCI0n00WnQSBK13tBaxv2MOl4v+4O5xcvWgLMBgkFwi+QhgiAcOFEz7iFGs7nnF4yQJPpPnMqEcy/q2escZao9PpaO7U/6nqUSqzxeVjc5eLO8jgyDFk8wePAn9blh1wLY9QOM+guodDD6im4uuSAIRysRjHtIRFxCm6bqnnD6bfeSM25ij17jaOMMBHmupIYgMmpJosbrp8bjo8bro8ztZZ3NScwfWbVJrYNZD4FCBdZymP1It5ddEISjlwjGPSQyKaVHz2+KjCJ7bO9m+jrSFTk9XJ9bTL3Pz4MFlZ3uV+/zs8vhpp9Rd3AXsFZA3S6wVUDJSugjHpQEQTgwos+4h/T06Gav20UwIObDHqjNzU5u2lHC5uYDy671alntwV1gzRvw3FDYMQ8q1sNX14X6jgVBEA6ACMY9JCmnH+GxPbTogCRx1t0PolSJho0D8VGVhVPX57PB1nVmrQlmI8o9s5q+qmkkeDC5vis2QNDf+rqpFH554g+UVhCEY5EIxj1EUigYceKp3X5epVrN1IsuJyG7X7ef+3Dm9Qdxev3733Efzf4AN+aWcPvOMnwdBFbNPrm8x0cY+WpEDm8OSkctSbiDckt2rv2yVcKWT9tv/+1FcNsOqsyCIBybRDDuQUOOO6Fbc1IbIsycdfeDeJxOFMdYLup1JQ2c9sIKdlU3H9D+7kCQ6Wt2MremNflKnEbFpUnRfDE8i3/nJDMpsnXt53CVkoAsc1Ksmc+HZxGlVrK6yXFghStZCXIHXQZeO6x+DYKiO0EQhK4dW3/Re5nWYGTY8Sd32/kUCgUBvw9rbTUKpbLbznskyIo1Yff4Oe3FFby/qmS/+79UWkvFPsk7zoozs2HCIP7TL5XJkWHMiArj54bWwL7QYmN+bRMA480mlozpz3a7i637qx3LMqx/p/P3N74PiIxegiB0TQTjHpYztvtG1NobG/B7PEw8/+JuO+eRIj5cx2fXTeDOE/qSW9l50+/7lfXMXLuT/+yT6vKMODPP9E9DtU+ay0y9lr9lJLS81iskzogzt7xO0Kp5YUAayv0tS7ntSyhe3vn7TSXgO8AatiAIxywxAqiHxfRJR1IokP/kyNoTrv8rEbEJpA4acsyuW9wn2si1U7P4cn05I/+1iOGpZp49fzgRhtZFOQwKBZclxfBdXRPLGu38IzORm/u0H0gnSRL/1yeePIebHQ43VR4vzmAQ4z4tDpIkMdDUSTdDwA+FP8FX1++/4M4G0IYd9P0KgnDsEDXjHqbWaIlOSftT50gbMpwhM04gbfDQYzYQ7+v9VSU0OLws2VnL4z/saPPeqXFm7IEgPlnmquQYbkqLa3f8P/LLOX7tLpr9AV4dlM57QzJ4ql8qRU7P/i9eXwA/3gfPDYOPzofgAeSxbiw+wDsTBOFYJWrGvSBn7ATqS4v/0LGx6Zn0nzi1ewt0BKuyunjinKGs2m1hV00z2bEm1hU3EBemIyFCh1al4Ka0OM6Nj8SoVHT48LKy0U6uw83cmkauTIllo83J9bklPNUvlcFhhs4v7qiHjy8AS8HBFXr3UsicdnDHCIJwTBHBuBcMnXkiq+Z+enBN1ZLEWX97gNSBQ1DrDjIT1FFscW4N/12czxc3TOQvE9Opsro47YUVDEyK4N0rxtDg8PL9tirmjElD8bulEGVZ5uWyOnY43AA8X1JLmdvLe5UWIDS3+JKk6I4v7GmGF0aBu+ngC22MPfhjBEE4pohg3AtMUdEMOe4Etiz+4YD2Tx00lGmXXEl8ZnYPl+zIMyg5AovDy6Vvrea5C4fz6i+78QdlcuJMNDl9fLaujC3lTWTGmKiVAjRqFQT2zDFu8Pl5urgGgOFhBjY1O3mlrI4RYQa0Colfm+zMq23i9H0GcrVQqP9YIAYIT/pjxwmCcMwQwbiXTL/sapqqKyndtqXdewqlivCYWNRaLQOmHsfQmbPRGoyHoJSHvxGpZq6ZksGKAguXvLkGly/AkOQI/npcDs8vySc+XEuV1c3Kwnpm9o+jUfZjUCpYY3VQ7fFhUipwBoJtVmba6XARp1GTrFXzdnldx8FYqW6/rSv6KHA1hL43dFLbFgRB2EOS5YPJ+Xd0sNlsREREYLVaCQ8P77XrBgMBNi1cwNp5X2BvsGCMjGLA5OkMO/5kSrZsZNC0mag0ml4rz5HO5vZx5ou/4g/KfHTNOBIj9Hy5oRyvP4gsy5RYnGyusHL6ydlcmhrLLw3N/CO/HK1CQZnbiyMQwL/nf/+cxChGhhv4ttbKhYlRnBUf2fZi1nJ4dtCBF27aPbD9K7Dkw301oBI/V0E4EvVWvBA1416kUCoZedJpDD/hZOrLSohJ7dOSvCNi5mykYyyr1p8VrlOTGmXA5Q1wwWur+OvMbM4akYJCgk/WlpESqWfJzlo0e/qOp0WFcXlyDL812bluT3BeZLGRbdBybnwkTxVX81uTg4lmEw5/AKNqn8QqFRsOrFBKLWRMgRn3hgJ4/S4IeEQwFgShS+Kv/yGgUCqJS89sk0VLBOKDV1DbzMi0SP55ZqjGqlUpOf3FFXy+vpw5Y9OID9fx/JwRjDa3pr28IjkGb1DmldJavqhpxOoPUOj0sNHmZG8b0Rc1DTT690lhGQzA1s/2X6AxV8MFH8BFn4dey0GIzgaNqevjBEE45okIIByxbG4/l09M57dCCxVNLjaWNnLrrL784+ttDP/nQt77rYTByRFk7bMusUKS+EtyDLl7RlQDNPkD/Ht3FausoUxZp8SaSdHtU5Nd8QzsmN95QeKHhPqFZ9wHfU+AvQ9WkgLcVhBzwwVB2A/RTC0csUamhfp1Zw2IZ0x6FABzN1Tw7AXDqbW5+d+vxVhdPiL0bQdfHRcVxpN9U7gnr5yOJpu5AvtsrcuDpV0shag2wpkvwa7vwRDV9r2wBIhM/wN3JgjCsUYEY+GIlxplIHXP99lxJu78fDNTc2K575QB7QIxhNJcXpYcQ7xWzdXbitstr5jnbK01s/WzrrNsjbwUEoZ23BQdngRNZX/gjgRBONaIZuoesnPlMhxNjfvfUehWOrWSFy8aybmjUlArFSzOrel039kxETySk9zyus+epulVTXbq966dbCns/GKSEsZeG2qGjs5q/74hOpQsRCyhKAjCfoiacU+RZb797xOc98AjKBS9t9yh1eXj3ZXF/O/XIlRKBcNSIjh3VCpx4VrSo41EGY+NUb0KhcTxA+Ox2D24fQF06o5/BpcmRbOl2YVSAhmw+Px8X2elJXmX393hcUhKOPOVjoPwXnEDQys2VW2G5JF/6n4EQTi6iZpxN9q9YS2f/fPvyLJMv4lTqczbyTdPPYKrufMl/7rb/M2VPLMoj0anj7pmD4t31HL9B+s5++WVjPzXIiY9voQftlXv/0RHAafXz4ynltL//h/4ZlNFh/tIksST/VL4vz7xvFdpYXJkGFqFgpq9ayErlJA5A7KOg0FnQdKeoDr4bBh2QdcFiM4K9Snba7vxrgRBOBqJYNyN1n/3NWXbt1C4fg2SJGGKiqJ403pqCvP/9BKKB+ricWnEh2vRKBUdDuKtaHJR19xJbe8o4g8E+a3Qwl9n5jAxK5rHv9/J0l0dB0WFJBGjUSEB9+WV4woG2bV3tPXQC2DcdXDpV3DeO3D+e6AJg9odHZ6r7YmVkDQcmkq767YEQThKiWbqHrDy0/fJGjWW7DETGHXKmYTH9N5CAZIkcf20LGb0i8Pi8JJX00xhrZ03VxS17BMIHv1J15buquOjNaVMzIrmpYtGsqXCSlWTq9P9NQoFlyRF8/6eRSMKnR6+qmnkrAGntd0xLAHuyocl/z6wguQcH0r8IQiC0AVRM+4mdSVFlG7bHPq+tJjyHduoyttJ7i8/9VqteK8rJmWQHmNkVJ9I5oxN49zRKW3ef3lpIVbnAazDewSb1i+WM4YnMSLNzDOL8vh5Zy2VVjcub+eDqf6VnUx/o44YtYrPaxoYE97BcopKNaj1MPuRAyvI4HOheMUfvAtBEI4VombcTfJWtf2D+/k/70OWg9SXlaDSaBh92tm9XqayBidfrC/n+21VnDo0EavLR2WTi8I6B78W1nPykMReL1NvUSsVnDE8mR1VNuZvqaRpz8NHfLiWi8amdbjOsU6p4LG+KWQbtBiVSt6tqOeGtLj9Xsti91Bv95Jo1tFg92JxeCiud3LOqBQwp4YycTXshqjMbr9PQRCODiIYd4OA38/2X5a02SbLodqwWqdj2PEnH4pisb6kked+ygdC82/fv2ocTU4v/5yfS5RRgyzLHQalo8mAxHB+un0aX2+q5LVfCrnvq2002L3cMjOnw/0n7EmdWZnfyIhiF65IL/qwrkegm3QqNpY28eby3czbXInHH0SjVNA/MYxBSRGQcwKseRNOfLTb708QhKODaKbuBjtWLKXZUtfhe05rE+/ceSMbvu8inWIPyYxtXYYxyqjh+61VROjVPHPBcMZnRh/1gXivaJOWqyZnsOxvM3jqvGHY984h7oK90cP6Lwv5+tmNeFyd7//zrlq+31rNrIHx/Oe8YUzICi2X6A0EOfOlX6mxuaHfybDuLXBYuu2eBEE4uohg3A0aqzqeNrOXra4Wn7vzwUM9ZUhyBMNTzQB8sKqUndXNx0wA7ohOreSUIYnEh+k6nerUsq8xlLmrodLBD69tJeDruN9/YGI4n6wt5fmf8vH4A2hVCgYnhzOtbyw3zchm8Y4atqsGgCEGtn3R7fckCMLRQTRT/0m7N6xl18pl+92v74TJvVCatiRJ4olzhvLh6hL6J4Rz5ogkdtfZqW32kBplINms7/UyHWq/5NXyz29zmZgVzRnDkzvcR5ZlbnJbmJmgQ13tpnxnI4v+l8sJVw9CoWh9mHH7Atz80QZm9I+j1ubh9s82Mzw1kpcvHoVS8buHnkFnQu43oWlSgiAIvyOC8Z9UX1aCtbbzlIt7rfj4PdKHjSRz5BiM5sj97t9d+iWE8c8zBrO+pIHp/1lKbbOn5b3MWCMXjU3jzBHJxJi0vVamQ2l6vzj+ccoALA5vy7bNzU76G3Vo96y2JEkSVn+Q/MmR9J9XTfPwSDa7PRT/Vsw1E9NR7mldeHTBDtYWNzIlJ5ZZA+JRKyXGZUa3nPeHbVXUNnu4dHwfpOyZsPo1cDa0X1BCEIRjngjGf9KoU86koaKc7ct+Arnz+bt5q1ZQtGk98ZnZvRqM9/podVmbQAywu85BhF5NuK79YgqHA1u9C583QHRS960HrFMruXpKJlZXaHR1k8/P7HV56BQSJ8eaGWjUcUqsGbUCtuhl+hpUqFx+jFtt+Lbb+M4rcfqMdABuPi6bcRlRuHxBBiWFY3F4ee+3YlKjDCzKrWHpzlpmDojnu61VnDpwEqh0sPULGHdtt92PIAhHBxGM/ySlSsWJN95KUr/+LHr9xS73nXrR5cSlH5rpLXef1I9f8uqot7cNyJvKmjhvdGonRx1av3y0i9LcBtIGRjHlwr6Y4zqY9/sH7V3NKUylRKuQcAdl5tY0Mhd4rqSG5kAQk1KBqsmHOy10XUVApuLLIpyjkjCEa4gL05EcaeCsl3/t9DlsV3Uzl4zvAyotDDgVlj8VSqOpi+i2exEE4cgnBnB1k/6TpqHSdN3Ua29s6KXStBcXpuPuE/u1276twnoISnNgBk5OAqA0t4EvnlhHTVH35/hWShKvDuxDtqH1Z9e8Zz1j/Z7maCkoE9RI1MyMpWxWHKs3tub2Hp5qbllLuSNriht48oedfLauDPuIq8BRB4se7Pb7EAThyCaCcTfR6PT0HTexy31Wf/UpW376sZdK1N5ZI5LbDdpKiNAdotLsX+aIWAZOCiUm8Tj8zH9hE7b67h+VflKsmXeGZKD+3UhzxZ7XCmcAhVcm/qc6YrdY2ba1Dq+7dbrTjdPbr9ykVyv515mDWXrndG47vi/DU80ok0bChJth/f+gelu334cgCEcuEYy70YTzLiYiLr7LfX799P1eKk17KqWCC8e0bZJOjDh8R1RLksS0i/vTb1wCAB6nn6Uf7ULuom/+j0rQqFH+bgB0jc+PP1ZLwNTam6OpdNNsVPJ1XuuiE9P7xXHX7H7cOiuHTQ8czxPnDCEhQsfyvDqeWriLOruHrFgTeo0Spt4ZWslp98/dfg+CIBy5RDDuRub4BK549lVO+etdmOM7TjXp93oJ+A9dXuhThrYtV7N7/wkwDiWFQmLm5QMYOiOUX7sst4Ftv3Q9RxhCyyduq7Ae8KIYWoWC4WHt+6Sbjo9H6Wt7jojVDeTmNdDY0Lr61U0zsrl1Vl/MBg0XjEnjP+cOpdrm5tstVVzxv7WMe3Qxby7fjawNh4GnQ/XWAyqXIAjHBhGMu5lSpab/pGmceuvdaPTta51el5Of33kda20NHqez1xeRyIw1MSwlNHgoJVJPmE6FL9C7ZThYkiQx+bwcMkeEVr9a/lk+5Ts77n8PBGUeW7CDSY8v4dQXVvDv73JxeEKBOdhFYFYrJPoZ2zbZnxIbwYjNdjSVTgIRbUec6+s9bFnc+dKIo9Oj+PTaCUzKDk11anT6OHNEcijpSvYsKFtzQPcuCMKxQQTjHhKfmc2cf/6nw/c2L/qeN2+5ihevOJ/Ni3/o5ZLBK5eM5NaZOZw9MoUhyRH8tKOGz9aV9Xo5DoakkJh1xUDi0sORgzIL387F20Gayq83VvDast007lkY4n+/FjPu0Z849YUV+73HKZFhbV4nazXYal0orX68CW0DtbbWy/aiRnxdrAKl1yh594qx/OvMwQSCMkt21oYeCOIGQGMRNO9/frogCMcGEYx7UExaOnEZ7Qf37Gvj9/Pw+3q32drpDfDcknye/ymfOz7fzPUfbED1+4xRhyG1RsnJNwxBH6bGZfOye3P7fOAlFke7bXZPKGjf/802/v1tbqc15KFheiJVypbXzkAAZ3MoOUhQ1/ZXJahTECxyULylvtPyBoIyd32xhacX7mJiVjQWu5cmlw+iskBSQNEv+79pQRCOCSIY97Bhx5/U5fsNleV8+ej9VBfk9VKJIDsujOumtn1IsLmOjPWNjRFaZl0xkLBoHUpV+/++zi5qqmE6Nc1uP/m19g7fT9NrmRTZmmBkYb0Nnzt0vt+PGQvolASNSnatrqYzSoXEM+cPY+FtU/nomvHcMD2LKKMG1LrQcooVG7q6VUEQjiEiGPewhKy+mKJiutynPHcbH953O5//6++9MhfZ4w9w3ugUzh+d0rLtofm5OA9gNaPDQdrAaM67ZzQZQ9t/rtU2dwdHtPrXmYPplxDW6fujwltXuqr1+ZH3/Ib4Dco2++lzbVjGRVG6zYK9sfNrSpJEXFhrE7fbF2D+5koqzaPAUtBlWY8VO6psBzzQThCOViIY9zCtKZyFfS/BNGBMp/solEqiU9JorK4ib9WvPV8mlZJHvtvB/M1VLdsi9Gp0KmUXRx1eNAYV81/YTFVBU5vtd57Qj5TIjqdrNTi8VFm7nqd8SmxrZiyVBNKesW0qZ9satwSY8+3UTY0hb23nfb91zR7+/W0uNreP+77ayon/XcYtH2/k3qqpoUFcvt5fzetwsrKwnma3v/3CGoJwjBHpMHuYzhxJRkosj9WM5u/9/DTv2tjm/dRBQ0nI7svUiy7vkfmznUmLMrBkZ+tcWavLxz++2cYpQxJJNutJjzF2cfShp1QqGHd6Juu+L+G0W8wt29NjjMy/eTIrCuq54/PNeP2tI8XHZUQRadR0eD5XIIg3GGRjs7Nlm1ZqfVb9/fQmAE2ZC2WKnl3bLYw8oU+H521weFlRUM+k7Bgsdi+JEXqKLU5+aTATiNahXPUKTLn9YG//iPXZujK8/iCNDi8NTi9mvYb/m5VzqIslCIecCMY9TKtS8tR5w5iYFc1r3/s5RbezzdrGiWdfz7CEUE3u8e93sjy/nk+vG09YDy/e8OBpAymss7M8v3UA0kerS/lodWi6Tnp0aM7tcxeOYNieNZEPN0k5ZkyR7VOQRho1nDYsia0VVrz+IFdOyqCiyUWUUc3PO2s7XDrR6g8wfOX2NtsMe2prQQV4w1V0VN82r25g97gobBYX4dHt9yi2ONhZ3cw/vt5GuF7N8NQIvIEg60sa+cZ8GWf//AikT4HUzltOjha+QJAnf9jVkh/9lKGJ3H1i/0NcKkE4PIhm6l5y9sgU7jxrPDWDTwZJYvfIOVSNPJ/bvtxOgVOFLMvkVtnIrbLx/bbOBwV1F0mS6N9F32mxxUmxxclrywrxH8bzkMNjOs8g9veTB/DQ6YNIizYwISua91eVcPqwpA73TdCqSdKqOSvOzPkJkYyNMKLes6SibFCiaep4gJsUhIBaajOy2+n1I8syZQ1OHp4XCvAVTS52VNn4eE0Z60saAfiiIYNlyVfz0o+beX3Bb7i6GHx2NLjny60tgTjGpOWRMwejUx85XSOC0JNEzbgXHT8wnt11U/naFcGOxr01uiDnvrKSuDBdy+Cj934r5qwRyaiVPfustGr3/geLLdhazc6qZZwxPJm/zswOJa04QulUSmxuf8uKTfvyBoNUeXwEgTvTE7h0axH2QABPHwNKux9Vc+eD2zSOADtLbQwn1Cx93qsrCcpQY3N3Obr7t8ZwBhrS+T/lx4TtqoUpi0HTdTrVI9XSXbV8uaGcU4YmctXkDAYnRaDpYDS8IByrxG9DL7t2aib9+ma02RaU244C3lZh45aPNuLwdP/oZps7VMOra/aQW3VgqyDtrnfw7OI8fiu0dHt5eovLG+Dd34rZVNbU4fs2fxAZcASC1Pv81Hp82AJBVk4xI3kCOFM6r4EbN1kpkv3UNziZ9uTPFNY5KKp3dBqIB5nsvJ/zC7vi7+cflnsIG34WXPgBfHvrn7/Rw4TF7mmZ8722uIH/+2QTJw5K4MU5IxiZFikCsSD8jqgZ9zJJknjy3GEEZJi/ubLT/X7YXs26/zQwNMXMk+cOJcbU9fKMB+pvn2+h3u6hosl10NNJLnt7DacMTeS5C0d0S1l6k16j5JubJmNxeDp8/8f60FKSAVlmZLiRZeP6M2vtLlZ43XjOimPKhvbJRPZSBGS8WgXV2xrIiDWypbzzZSlvTCnirsZ/IpXtKYcmDAadCREpcPJ/QhOaj+DWB4DiegdXv7eOG6Zl8dC87fy8qw6jRsmds/se0S0rgtCTxOPpIaBRKXj+wuG89ZfRnDMypdO+23q7lyU7a7t1MYdHzx7CacOSqLJ2PR+3I/6g3CO19d4yMCmcKTmxHb43MtyATiHxc0Mza5rsfF3ThFahIFajQmtQo/Dtv998y5JyLhmX1un7ekWAu5qfQArs80Aw6f9CgRhC/x4FwarY4qCg1s4dn2/m512hvvTHzhlKdlznYxQE4VgnasaHiCRJzBwQz8wBoT7CRbk13PjhenyB9rXVi95YxexBCYTr1cSYNJwzMgWj9o/96KKMGv4yMZ3xmdGUNjh58ecCNnfSdLtXdpyJS8f34cF525mc3XUCkyPVAJOeO9ITeGR3FTfuKMEVkLH4/JwcE0GWrESf13HWrr30Vh/VBolp/s5/Llcnl+D3mFF5mpGQQWeGhCHdfCeHls3tY2sHLQNvrSjqdPCcIAiiZnzYOH5gPNP6dlxrq7K6eWdlMc//lM8D32znuKeXsjw/VOPw+oNdrkbUmX4JYaiVErs7SQ25r6xYI3+ZmM4pQxIZmBSx3/2PVNemxhKvUVHu9mHxhVoAFtRbUVbvPzGHYbOVqoEm8haWoe0ggcVJsfXc4nuHsvBRvBr/ILKkBHcTKI+e52Gr08fkx5fw9KL2qV13VNp4dMGOI7plRRB6kgjGh5G9MTUurOv+YYvdS6PTx8bSRk787zL+9V3uQV9rTVEDV76zluYD+OO4pdxKtdWNUatkdJ/Ig77WkUKrUDDI1H6gls25/89IAtR+sFQ5uDA+ut3739dFU24aTGb5V9xQ8xCSvGdw16pX2ie+PsIU1NqZ8dRSJj+5BNs+XSqDksJ58tyhLLptKgv+bzJef5BFuWKlKkHoyNHzWH6ECwbllpG+MwfE82tBPaUNTjJjjIxIiyQ2TIvZoCY92khKpB6PP8gFr6/i8onp3Di965WhOtJZysiOVFndnPjcMpqcPk4aksiMfnEHfb0jhbuDVgadY//zfwM6BVpXAAlI9bd9xo1W+/gkfR4Z1QvbHhTTD+y1sOYNGHExaIzgc0PZKvA6IHMGaAx/5nZ63PqSBm75aCOVHYxBuO+UAUzMau3WeOj0Qb1ZNEE4ovRoMD799NPZtGkTtbW1REZGMmvWLJ544gmSkkJ9RxaLhYsvvpgtW7ZgsViIi4vjjDPO4NFHHyU8PLzT806fPp1ffmm7/NwFF1zAJ5980pO306Pq7R4uGJ1KtEmDQpIYmBhOZqyR4almFmytwu0L8PSiPE4bmsT7q0oAyIkz8feTB/yh6yWZ9dx8XA4Ftc0sy6tvWWawM01OH2PSIzvsM16wtYoqq5srJ6Uf8aNlm/1tA+/5CZGo9tOnDqB0B4lc14hGr6JWC38blMa6gJufd9WSrneTXfMjQW0ESl9ruk3qd4X+/f4uWHgfpIwBWwU0Foe2Dz4Xzn2re26sByzYWsXdX2zpsHWlf0IY/RNaf4dlWT7i/28IQk/q0WbqGTNm8Nlnn7Fr1y6+/PJLCgsLOffcc1svrlBwxhlnMG/ePPLy8njnnXdYvHgx119//X7Pfc0111BVVdXy9dprr/XkrfQ4u8fPu78V88O2aqb2jSEhQsek7BjWFjdw1xdbuP+b7TQ5fS2BGEKjVv/z4048/j+Wuen24/vy8sWj+OrGifttGodQv/bvE5FY7B5iTFr+9W0ud3+55Q+V43BQ6fZyX145+c62Nbxqj4+K5NbPxjo2isYJUXTUsFx6XCyebBMBfxD1+gZePHsY/7t8DBuaw5jmfZ7BDU/iih7ccQECXij5tTUQA5Sv/fM31s3qmj088M02zn/tN278cEOn3Ry7app5cUkBhXWhMQnP/ZRPRdOxvSiGIHSlR4Pxbbfdxvjx4+nTpw8TJ07knnvuYdWqVfh8ocQTkZGR3HDDDYwePZo+ffowc+ZMbrzxRpYvX77fcxsMBhISElq+IiKO7IFFGTFGbj++LzuqbCzZWcvxA0OjrAcmdt5C4AvIvPRzIXd8tpkmp/cPXzsnPowX5ozguqmZjEnvvE94XXHjnn9bM3ctzK1hWGoE4zKiqG3ueA7v4arC7WWt1cHb5XXMXLuLtyrq2zVTL2u0M0/pwTouCgB9tRt9nRd3//bTdNKW1FGYqUOWQKFWsPqbQqb3i+OGaVmUunW4gkpGVt3Np0l3IytUbE+dQ03SrM4L6LSEmqsPA7Is88yiPMY8spj3fithTVHX2dtkObQoRH5NKBhfPjGdZPOBd40IwrGm1wZwNTQ08OGHHzJx4kTU6o4XQaisrGTu3LlMmzZtv+f78MMPiYmJYdCgQdx55500Nzd3uq/H48Fms7X5OtxIksSVkzIIyvDY9zs57YUVuH2BTjMV6dSt27/dUsVpL65gfUn7P5CyLOP27b/mrFUrSYjQdblAxcLcGm77dBOxYVoW5dbw885abC4fD83bzqfXTeCdK8YewJ0ePjQKib/tKuPv+RXYu8i/7ZNlnBGhHh1NqRO/SYnkl3EODMeb1LpWsdIRQLtndSd/ko6teQ3UlTZz9ZTMlhScrqCSBKWNuQm3sTuYQHzl4s4L6LVD3c5uuNOD89XGciz21geraquba99fz/M/5Xd5nEKCYalmnrtwOKv/PpOld01n1oDQ+AKzoePVsgRBCOnxYHz33XdjNBqJjo6mtLSUb775pt0+c+bMwWAwkJycTHh4OG+++WaX57z44ov5+OOPWbp0Kffffz9ffvklZ599dqf7P/bYY0RERLR8paam/un76glNLh8uXwBZhq0VVnZWN2M2aLj4d4kklAqJb2+ZwqXj+7B3Fk1Zg4unfszjf78Wtdl38Y5arn533X6v7QsE2VZh49kLhnPV5IxO91u8o4aUSAMj08ykRulRKiQW5dZ2uv/hLFaj5usR2VyQEMW9mYnEaVSoOunW1O4ziEtlDyAFZAy5NmS1Al9cqBlbBlR+mXAUbJN91I6IYOXcAjz+QJtFIN5rGMQOTzQnOL9r2eY1Z1KbdBwNCZOQFXseiBKHQdLIbr/vfcmyzNJdtfj2eRix2L0t2dnmb67k+Gd+6XIUdIRezZ0n9OXty8fwzU2TOGN4MvHhOmJMWlQ9nF9dEI4WB/2b8tBDDyFJUpdf69a1/vG/66672LhxIwsXLkSpVHLZZZe1W7f32WefZcOGDXz99dcUFhZy++1dr+96zTXXMGvWLAYPHsyFF17IF198weLFi9mwYUOH+997771YrdaWr7KysoO97V6hVSk4rn/rSOVfC0LLG3r2WZP3+IHxXDAmldQoPddOzeTS8X2QgFF9zPy228LD83N5dMEOCmrtuLwBrC4fKwrq+XlnLR5/gPmbK/l8XRnBoIzd4+fphbt4ZlEeG0sbefTswUTo1QS7mGpzxvAklAqJaJOW8kYX/12cj8Pjb8l5faSJUKt4bkAaN6bFsWXSYJ7o2/GDmjWqtcXAE60hqFVgmRKDwhnAG6/Fm6rHl6InOrcZGVhQ20hWroPynY384/2NePcJdj9ZorhB/R3axjx84Wm8kfAAkxvux+i1EFm/ASm457OM6dvjGbm2V9q48cMNlDY4kWWZ4noH32yq5OxXVvLQvO3c8vHGTgdoPXrWEB48bSDr/zGLm4/LYfpRPMpeEHqaJB/kivb19fXU19d3uU96ejo6na7d9vLyclJTU1m5ciUTJkzo8NgVK1YwZcoUKisrSUxMPKAyybKMVqvl/fff54ILLtjv/jabjYiICKxWa5ejtg+F8kYnF76+ivJGF8NTzTx13jBOfWE5bl8QrUpier84/jIhnR+2V5NbacPi8FLe6Owwc9e+wnUqNCol9XYPN83I4q8zcyiqd/D3uVvZUNqEJMHY9Cj6J4Tx3qqSTqe+zhmbxmNnD+Gx73fw2i+7yY4zcf+pAztNWHK4s3j9uINBkrRq7IEgBqWCYpeHj6saeLG0FpUEs6LDiaj00PerKgACESqqx0cRv7YJf5QGb6QalTOAYXuo+0OfHca/62sxqBTcGhmDWwlPVbdtPfgo52e2eJN4riybILAt9n7U1uLWHYxx8NeNoDX1+GewLK+ORxfsoN7uod7e+diDGJOWGJOGsRlR3Dm7H+E9vOa2IBwOeiteHPTUppiYGGJi/lhKxL1x3+PpfKDPgezze9u3b8fn8x1w8D6cFdY5qN4zZ3NTWROznglN4ZKAfgnh/Li9hh+3H3zihFAyhlAN543lRagUCm47vi8nDU5kQ2kTsgyrixrYUW3rNBDHmLR499TSIw0a7ji+L1dPyUSvOXLXpI1UK7lyWyl3ZSSS73CTadAyNMxAH72G+zITqfb4KHB6OF7S0LTnGKXVT/zaJnzxOvQ7bPz+sdNV0MyD8VH8bPLzaF0ttyS2rzFelD+j5fvl2R+iLi9uu0P8wB4PxOWNTpbl1dPg8JARY2RiVgx5Nc2sKGj7sG3SqvjrzGyunpyJooPsYoIg/Hk9Ns94zZo1rFmzhsmTJxMZGcnu3bt54IEHyMrKaqkVL1iwgJqaGsaMGYPJZCI3N5e//e1vTJo0ifT0dAAqKiqYOXMm7733HmPHjqWwsJAPP/yQk08+mZiYGHJzc7njjjsYMWIEkyZN6qnb6TUv/JSPv4PEE2PSo1hTvP/1h/cVoVfj9gXaNHNDKIXmZ+vK8AaC7K6zMyotEqvbR2WTC5vLz9iMSNYVN7JvMWLDtCy+bRoRhlBt6PppB59o5HCkkCROjInAF5Q5Ljqc/xbXMMSkZ05CNG9V1LGssZlmf5DtAQXJgD9Kg6rBi6rBS9CkImBSorS3HyBnr3ExLjIMdYzEazV1XZZhoX8kaSmZzKp4CUne87Oy7O7xFZy0KiXnjEpGq2p9mNpabuW8ejv/XZyPUiHx95P7Mzg5griw9i1dgiB0nx4Lxnq9nrlz5/Lggw/icDhITEzkxBNP5JNPPkGr1bbs88Ybb3Dbbbfh8XhITU3l7LPP5p577mk5j8/nY9euXTidoWQJGo2Gn376ieeeew673U5qaiqnnHIKDz74IErlkVtDA/D4AxRbnO22qxVSy3zN/Yk2akg06zhzeDKj06PIijVyzisryatpPV6tlDBolCzcXk1hXevUmXEZUUzOjuHpRXmMSY9k7Z6pTBCaX3rTRxu4dVYOo9Oj/sRdduzh+dvx+oOM6hPJ2SNTuv38XXm/0sIZcWaa/QEcgQDjV+1ggEnHAKOeKZFhLLRYce+ZWdwwPIK4JXUEItRoStv/rPZSqhXslgOMr5XZolfh9nTcp358tIVL3R+jtu5uDcQA1tLQ1CZjzy3MEdvB3PIhKREMSYmgyeljSEoEI9OO3vSngnA46bFgPGTIEJYsWdLlPjNmzGDlypVd7pOent5mwFdqamq77FtHi1qbh/hwLfX2tk30w9PMbQJjZ8ZnRvHBVeNQKqQ22Y5unJ7NrZ9uAkCvVhIfrm0ThPc6Z1QK54xM4ftt1Sg6qJH9ttvCncp+PPXjLm6ZmU2Dw0tiRPfMHV1b3MC2ChvL8us4YVACzy3O475TBnbLufdHr1DgDsrsdLjpZ9RxWpyZCzcXcnx0BH9LjOKh7CQW/lxKCRBe6sIxOJygVoHKHkCb34zid7Oi/APC+KTJylVeBQ6bjxvDI/hO72ZNU/sHqqUNZoKJ6raBeK8d82D0lT1z012oaHIRrleJQCwIvUjMOziMfLWxgu2V7edAdxQYfy9Mq+KVi0ehUirapR2c1jcW7Z75yi5fx7VvgIfmbef0F1fQ4PC2Gf271ylDErn9s028+HMBF76+itNe+JVd1Z3P7z4Yxw9IACDWpEWtlNhZ3YzV6aPgAFaV+rMyDVok4M3yOpK0amQ5tGjEHbvK+LmhGY1CQb89Dx2+MBXGbTbC1jehzW/GNSgcb2rrA4k+O4ylTgdXSyY8laGMU45KB3Gajp97p0c1oWvY0XHBts0Fd/vlCHuS1x/ktV8K6WLatSAIPUAE48PIh6tL2rzOiDEye1A8CRH776/rE2Mg0thxYoVIo4Zxme1XEtrrrtn9+OvMHK6clEFds4egLOP0tu8H/WlHDUX1oRr1xtIm6u0eXvulcL9lOxCnDA0NvrtwTBqBoIzLG+DH3Gqu/2B9mzmwPeH61DjCVEr+0y+V8WYTW+0uzowzA7DTERpMl5hlRqGUkGQZTx8DDZOikSM0GLfacCW2BmOp0csJ5TL2Sid+T+gz1GaFMVTS0lEOzRWNZhan3MyW1Evav1m8HAp/hqZScIQGVf1WaGmTAa07Lcqt4dEFO7hsQjonDIrvkWsIgtAxsWrTYWRIcgQ1ttYpMK9fOoqc+DBkWWZtUUOHK+PsFWvqOre0p4ssXHq1krQoA6lRBgYnR+ALBJm7obxdrdfxuwB90uAEHjtnSJfX3Z8ftlUxITOmZcWq/y7OY2SfSMoaQ7X3glo7D87bzqNnHfx1XIEg+gNIOpFp0LLT4WJkuAGTSslfkqLRKBToFAr+V1HP7JhwsiJ1pA2KZofbg7rSRSDDgDtNjz/HhDtMSZhaQuGTcVrazwKoUAVJc0v8NSmOTyx11HqDhMbHhzJyNQUNHNf4EbLGiPT79Jef/yX0b/oUmrLP4rFVCfzv+i5SaP5Bq3Zb2FDaKFZWEoRDRATjw8jsQQks3lGLJEG4Tt3S3CxJEilRhk6Dcf+EMJ46b1in591ZbWNdSed9zv/8tnU9ZKVC4rxRKWwp77p5NCvWyL/OHNxmJO7Bqmv28MyiPCZnN7K7PtQcXWl189tuC4EgvLAklH6xvNH1h1b9mbV2FxcnRXNDaux+jx1k0nPh5kLeG5pJlDr0a/FI3xTOtjr4R34FHw/Lojxaib9JCZkmTNUe9DtDDytdZUWPztHxam01ZrWOq13hPBHlxWLYzp27h7fs82DJYO6Tn+PdrF8YXxbKPidLClDpkXx7gnPxcmoDCSTEXkP0fh68ALDXUm9zsstpYlJ2DPg9IClA2fHc4E1lTZw5PHn/5xUEoUeIYHwYmZQdwwOnDuSEQfFEG7Uts1oCQZn1JY0YNEqO6x/Ht1uqWo5RKyVevWRUl3+g3/+tpCW94f4EgjKLdtSgVrYPXn3jTUQbtRTW2Zk1IJ6YAwkKHZi3uZLj+sexsrCevBp7m5HeAPd/va3N61iTlmcX5XH7Cf0O6jrvD83k/M0FXJUSg1aS2G538VuTnSStmkSthk3NTuq8Pm5MjaOPXsuLA/vwRlkdd2e2zlcfGW4gIMs0+wOkWAJ4d9rwphvQ7dp/X7YkgRy2mQ/N27igcDYvq5u5otBMUeYMoPXhyBEI/RoW+mMZD8hqA1eon+Q/EV8QW7UUAG9EBo9YpnNm3HLYUgoDTgX1nuZxv5fcrWt4ZaeRsco8BgV2kGFdwwP28/neEsuYPlG8clI40XmfwuBzQmk2Pc2g0rUE50AgQHTQArRfAEMQhJ4ngvFhJMms58oO8kKvKWogEJQJyjJmg7rdMekxxi7P21H/b1csdi8nD04gPkLH5+vKsO/p++yXEE5Fo5PaZg+frC3jtuP7olMfXM24qN7BP+dvP6AlG/f6ckM5iRE6bju+70HVjqs9Ph7NSUGrCDVV77C7uCI5Bqs/gCsQ5IrkGBp9fubXNTEnMZp0vbZNIIZQq8Sz/dP4fnc9zbutKLxB1GWdT2naV3S8ks/qI1mnH4krqMTl8aFPiMAtd/zz+KgugwtMSayNPIWl+VGc47yMbMM5bLGHUV8TGg8QrfZy5lfXIs2VaR52JR5dLL7yjVxdfiGVHi1LVTqy9f3YZh+JT1Zi1Ch58aIRRIfrYGU+LPwHNJWFlmo0RIPGAF4HN920Bta+BSu2w6Czoe/s1mAvCEKPE8H4CKBSSkQbNUTo1WwsbWrZfsbwpFAT5H5UWQ9+HdkF26oBMGiUjM2IQilJlFgcbCm3MjY9iovHp6H6A9mYHpq3nXq7lwe+2cbo9EgmZEazusjC/iruVVY3+bV2+sYfeM2t2OXBv2daXLHLg0+WUUpSqBl6zzNNpFrFnMTQ4DZZlvl2+w5KfEsobS7FpDYxIm4Ep2WdRtJmG5vtobnC7mwTSlcQXUHXteP6KA3rK8NYb2st83p9gBqfH7UUwCe3fZDZbjeRbX8K9iTAKnXrKHW3Hbx3ZfhaJGsQrzkbX81OnMoa0ip+JNNwOpPMDTzCi4ysf7jl3A5vgDNf+pWV986EU/8bmi6l0kL+QggGQrXjPhND85n1Zsj9JvSVMATih4QygSWNCH1pun7oEwThjxPB+AgwMi2S5Eg9bl+gzdSns0Yk7zc5vz8QZHvFH18y0ukN0ODw8r/LxzDlyZ8J0ypRKuCMg+hfbHJ6sTi8uLwB8mpC/ax7m6efPGcod83uy8LcWl7tYmS2WimxpqjhoILxqXFmXiyp4eT1eWxudjJvRE6X+8syPPR1KTlDtrC96TcAlpUvY3rqdLSG0K9KUAG1GQb6/LD/lapSDLlAQptt82obeSpzEx/7X6Yg7mROKDzzgO8HYIU3h9T4cfwveCpJimYKVH2549LriVtrYu6WKopMd2MPtP21Nmj3vA6Lh7HXhL4feVn7kw+/GH55Epz1UL019AWhlaNmPgBZM9ofIwhCtxDB+AigVEhcOzWTuz7f0mZ7V2sP77W6qKHDVXcORkGtnSlP/gxAn5jQwK0D4fIGUCklXl5ayOvLdqNRKVpyWwOMTDNz7qgUPl1XhsffeVO6JMHSu2bQ6Oh8EYOOhKuU/D0rCX9Q5q2KOs7aWMC5CZGcHR9JrEZNP2PbWuf2ShsWewDXhpMx99tOs89GjbOGDTUbyMwIjeZWBCFjXvV+r21KNvB2TccPDh7PVOYGJ+EvlxgVXsN624HXOB8v6YcnTcV/y7I4Z0QiD50xBK1OzTNZcNPMHG78YAPYWkfBXz4x/cBHSGtNcM4boYAclgBpE6HfiWBO2/+xgiD8KWKe8RHi1KFJnDmitTaqVEikRu2/T29DF6OoO6JTdf1fIlynJjuu89ppXbOHn3fWsra4gbd/LeLiN1bzwarQ/Gnv73JkD00xs7vezvqSRvp1UeOVZSiqczA4uatxy51TKSSuS40jTa/ho6oG7s+vwC/L/GSxsd7qoNAZGqU+IDGMk4ck4PSoSVec23L8p7s+JSyh4zncnWkIV7K5ueMg2+zXUVMRxFITIFF38COYny3NQqtScNsJ/ds8kGXFmnj07NYpYH8/uT8PnnaQWcyyjoMrf4Dz3oFx14pALAi9RATjI8iFY1JR7umnPXlI4gEl799Vc3AZsvondr5EmFal6LKPurbZTYnFwXUfrOfC11fxxvLdrCluwOkNoJAgM9bYZgDa0l21XPPeev5vZk6HGb/29Uf6vX/Puqf2XeXx8XJpLVdsLeKUDflssoUGZKmUCi4a24dIg5qVm/oyTH8pADmROUREGlHrDnywWldtEZ/bbWhNoc8hU3lwQX4vjz/Iw/NzqbW5kWW55UFnSHIEkgTDUiK4ZkrmQU8HEwTh0BDB+AgyLNXMKxePJCvWyBnDkva7vy8Q5NeCrtee/r1rp2by6iWjuOW4bMZlRBEX1hosXpgzgptmZHd67PzNVXy4upS/TOjD6D6RPHTaIOaMTW15f3iquc1c1mKLk/NGp7Bqt4UTBiZ0dEoA4sO1Xb5/oPamOG/yB/iyppEz4s28PySDM+JaczAX1dtpdIYGaq3YMJB+EcOJ0kVhcXgxpR34kobp+oJO3yt0uNGkhHqIdPIfD5bbK6xEGTUU1Nr5bmslDo+fRxfsQJbho2vGi0AsCEcQ0Wd8hDlhUAJT+8ZiOYD+03d+LW4JLB1JCNcxo38csizzydoyABIjdIxIi+TEwQkEgjJKhcS2Civ3fb2NYkv7xSUAfi2oZ1leHVP7xrK2qIEZ/eP4cXsN93+9jaV3TWdTmZUdVTbmbqhod+wzC/O45bicNoO3+kQbmDUgniqri0GJ4Zw9MqVl6cY/6oWSGgJ7orFRqeDezESuTI5pl/f7t92WfV5J9JPvIFZfiRIJj6XzDGhNE6IIxGiJnh+aA26Wu261GGpazq+MRl/nIceoI9/R+bk7U2l10+D08t5vJXy/rZr7vtrWMo3ts3VlXDGp/TQ5QRAOTyIYH4F0aiXJ5q77i38rtPD4Dzu73OfdK8eyo8pGblVotHWUUUPGPnOW9zaJD06O4L0rxtLkav8AsKmsiX99m0thrZ2P1pQSplXx4WqJiiYXWbFGmt1+vrpxIqe9sIL8DhZ98Adlvt1SyanDEokxaRiaEkGzy8/6kkY2lTWxKLeGX/LquWBMKueM+uNLK97SJx6fLPNhpYUkrYZUnaajVNE8dd4wTh+WzOoiC0t21jJvcw3jM4ejSJCIMOvapLv0R2uoHhtJ/Lomwlc3IJtaf502u1OAjkdc/5z9Gem1P5GX8CF11R7mmLX8V+XD1sUgts6MfeSnDre/9HMhf5mQjuIPTD8TBKH3iWbqo1AwKPPw/O0tWbeijRp+vec4vrxhAqP6RDKjXyzzb55MapSeJqeX15ftJjPGyA+3TsFs6LgPM8Kgpk902wFJt36ykfNeXUmjw4svKNPs9pNk1vPTjhoCQZm8GjvTn1rK3+dupdrWec0vv9bO3A0VTMyKYXl+PWv3BGIAk1ZFUJZZnl/HtoqOU3TKsszDBRVMXr2DXxtb+8i9wSDBfZbfnB0TQV+jjpNiI1hndfBBpaXduQwaFccPjCdMp8agUZEYoWNcRhQRBjXTL+mPUh36lZGB6inRRBe7cI4wowiCwt7aU+yg8z7weikSydvcMrfaalAwLPbAp2wlhGsZlBRG/wQTmj2Z0rJi2/5s/MEgze4/N4peEITeI4LxUWhjWSM791nkYWSfSJLNekb1ieLLGybyvyvGMiQlAoNGxZCU0AjlG2dkH9CAsH2plQpumpHNOaNSSAgPHVvS4OS8UalkxBi5bmomN0zPYu7Giv2m44wxaSmqdzA81cyY9EgGJoahlMCkCwXjDaVNPDx/O8EOzlPr9fNKWR1KSaLC09os7wnKPFtcgy8oU+H2ss7qYEWjnTqvj/uykvhLcseD0Z74YSfP/5TPjiobgaCMSafC5Q2wotaKb0AoaPrSDGibfNRn6DGtbsAfp8V+QgKGJAMAE+V6RoV3PHhusSuHxoRJ7F3DQlYrSAw/8GxXsgxGrRqTTo03EPo8/L/7XPrFh/Ht1soDPqcgCIeWaKY+Ci3Pbzto6/gBoeXwSiwO3l1ZwpyxqeTsmUqUGmVgzthUTj+AAWG/9599FqdIidTzwDfbGJAYzl0n9uNuqX+oVhuUsdg9pMcYefKHXR2eZ1SamfW/m4KVbNYTkKGswUVZg4ucOBNvXT6mw2ZXhQRKCXY53Gy3t466DlMp6W/SceqGPJSSxIY9o6a9+3kw0Oyz0lNhnYMJjy3B6vJhVCq4yxSNA1BVuAjTKDBkmggOisAbpSbc4sM+OByNxYPSaGNLTcdTm14rT2dn1EWcGAjdS1CvJL2LweLhehUapQKHN0C4TkWSWU9Fo5OKptbWhpLfrVH97AXDSdpPV4YgCIcPUTM+CpU3tv3LXtEUen3fV9t4+9ciXlnaOlgqLkzHY2cPRbOf+cX7c8GYNE4eksiyvDrWFTdg2pP1SaGQePLcYYxMiyQpQkfkPgOx+iWEHgjW75Pic6+9azifOCiB04clMTo9ivBOkpzscrgZHmagv1HHNSmxLds/rWrgy+pGxkWYWgKxBFzWSY14r4nZbdd+trpCtW2HP0igMdRvrgjI6ArsaLZZ8Td60P1mQWdSY97QhEICFPXt0l3uFan2cl/0UuyRoXtUOgNoyjuPxjaXH48vQKRBTYxJgwQkRxpa3h+THknfeBPh+j2fuRTq/xcE4cghgvFRKP93c4stDg8FtXbi9zQl29ydj7D+o5QKicomN2Mzovj3tzvw+oO4fQFe+rmAYFBmUFI4mbEm3L7WvtTKxo4DULJZj0mrRJJCZe+XENblYvfpei07HW76GnWsbLKzstHO+5X11Hp9vDYondPjzC37JmjbZ976vbHpUXQ47kmC4O8SlyjsPnwZJpoHhtNc58ZW78brDlBRMIyHMmzcnOpnorkJ9hku1ujTcFrh6TjVocFgmlInsrvrwVvNngCVTW62VzazobSJglo7AxPDUUiwtrgRhSSRExuaehWUYfZ/l/HR6lIcfzL7Wrdb/DBs/QLqOm4lEYRjlWimPsoEg3K7UctjM6K5/+ttlDWGaodLd9Wxu85O5p4/3t6AF80fTD6xr0ijhkW5NYxKMzP04R9JjzaSV9PMi0sKSDLrKKxrnRo1MSua1UUNxIVpqW32tDlPTpyJS8b34bkLR3Q6oGxfKToNJ8VE8EVNI/NqmzApFVyWFMMD2aGm9zXW0HX1Colar48ni6q4JS0evbLjZ9E5b6xqu3CFDLFaFcdHReDLa20ODugUKGx+whdUIROqde9la/RjMmaiL3dwVlIEFyYF+dAJqTo7X1Qp8QSVRMhKHIQejDThGjiI2U2JEVoqmlxoVApy4sJodHrbjBMosTj5+1dbeez7HVw0Lo0rJma0tDYcUumTIH8RfH0DRGaEcmXnHA/mPiDmRQvHMFEzPspUWl3tlkxcsKWKKJOGt/4yBgjVYvc2IxdZi7hm4TUEggc/reb3Hj1rCGqlxHED4hnVJ5Kd1aERwy5fgOMHJrT0S2uUEvXNHmRZJifexJSc1mbjvvEmTDoVMwfEHVAg3uufOcnMiArjrDgzGycOagnEAOPNRu7PSqJo2jBGhRt5priGkSu3c9W2ojZ9zHv5gzKxGhVJOg1pBi0PEMHVTVqSdzqR96kYB80aAtEafIk6guEqvIPCcUyOwW8ONafby0MPAbWVQcpyYXqZRGZeGPckxnNTYhzuXaGHEH12GO8o9r8+8r62VzYTCMoMSzHjczTicTYzqk8kQ5LDCdOpCNOFfr7Nbj+v/bKbyU8s4ep31/HZ2rJDW1vOngUnPg4KFZz0BFgKoWI9fHheKEgLwjFK1IyPMrvr2ifm+CW/nFEZJl5ZWsCY9EiunZ7M+3kvIcsyXxd+jTfgpdJeSWp4agdnPHCxYVpW3H0c8eE6LhqbxmkvLifJrKeg1sGZI5LQqpTM21zJkJTQgK3sOBO/FliYMzaU/3hUmplGp5fMGONBZ4+KUqu4LCkaRyBImKptX22TL8DkSBML660tteRGf4Dv6qxssjlZPKYfkWoVXn8QfzDItL6xvFHVzOWRZoLIBI0SgcL2c6y9sRp0RQ6UFi/OIeH4w1TIZjXFJ8aR2uSHIIQvrGnZP7hn5HNgpw0DsPfxR+kIUOTytDv//jS7/fQzuXlosozfVsumhiZe2B2HPxAaUJcTZ6LZ4ye/xo4/KLN4Rw2Ld9Tw5I87ef+qcQzoIvVpj5JlGHYhpI4NrQRVthbK1kDBYph8Gxz3D1Ac3DrZgnCkE8H4KLO7rn0Na1j/Eu49fiaDYkOr98wvnM87298BwKg2Mj1lOgmmP59uEmjpl440anjtktF8saGcJqePgppmtpZbuXF6Fi8vLeT0YUmcNDiBoAwzB8Rx4/QsUqMM1NrcmHR/7L9lf6OePGf7tt5ojYphYQa+djaSrFXz9pAM/lVQyYomOxUeH0N/3c7Ssf2Q7T5OeX4Fnj39wlY5wPcWKzc4DW1qxHs5ozUYttqQAONWG/aRkciVbgZuaMQfpyVoPLD7sCRpiShTYfUefI31i10ekvU6rst/lLEpY3h/xgXY68tZUafn3/l9SIwKI8msI8msZ2NJIwEZ6u1ernpnLd/+dcqhGeilUMCpz7a+djWAIRJisqFsNXxxJZz7tgjIwjFFBOOjzPC0yHbb/IZ13PzzVyhQEK4NJ8mUhISEjEyOOQe/7GdZ2TJm9pnZrWUZlBxBSpSBs0Ykc+OHG6ixufEFZGb2j+PZC4a3ZPiC0BQrgLjwtv2aFW4vyboDCxgZBi1l7vY12GFhoXM3+QNUeHzcn1/Ba4P68N/iGt6ttOCTZW7OLeW//VIZnmpmdVEDAB9UWxgUpsdb3/GAN73V39JP7BgajqbahbOPAQlQ13qA/dd2G05JwLS+kXOiI3m7qu6A7nNffXVNXF72dCig5f8I+QsxjbueE/tkk6LYSL7TyE6/gl22CAJy6/+NSqubeZsquPxwSJmZOAx0ZjjladjxLexeCqtegYk3H+qSCUKvEcH4KNM/IQytStFSuzObPFQ4CxiXOJb8xnwKmgooaGpdxGBT3SYAssxZ3R6MASL0aoYkR3DPSf1bRgCfMOjAauEOf4Bip4f1NmebEdFdmRoVxr++zcUXCDIxK4YTByew3urghdIaFllCaT/XWB28UlrH431TUCskPqtu4NG+KfQL0zM4OaIlGEOoVt3ZGkz1yVq0NXpkfxBtuRtVgxdNZfuauTFGhz1Gjcktgwx+iwePPRTgtfVeNNUe1JEHn3tbqwjwUdgLaC15+2yVYfUroI9ksDGOwboISEwjGJ7CG02jeWx96zCR5fn1h0cwNsTA+e9CZDokjQB3Eyy6H9R6GH2lGNglHBPEAK6jjE6tZESaGYC0+GYic15Co1Tz9LSnOSXzFACUkpJ+kf148bgXW47TKrU9ViZJkjh1aBK3HJdzwIEYYHGDjY+qG3ixtIYXSmpw72eZRVmWeWtFEW+tKOK930q49dON/LSjhlERRp7rn4ZeEfrvHqVW8kGVhedKavhndjLnxEextTk0Sjo2rO3nME6jx5RgaHctd18TkbU+AiYlmloPqoZQjVylbd+06rX70Ja4cBTbcZTYkRJ0NA0wYUg3ofMEMSUbeK+2NTXnKbFmRkR0nDBkX49nbMZg2YYsQ3HUNcj7rgDlaoT6XVC+BrZ+gWLlC8S7i9ocv7m8CVnuOgFKr1CqQoF4r6rN8JdvwW2Fzy4FV9OhKpkg9BoRjI9GCg/jhhRhi36CenctaWFpKBVKhsYOZXb6bN444Q0mJk0kxhCDSgo1jgQ76hTtZg1+PzfnlvDE7ipGrdzeYW7ofZ0RF8lEs4ktzS4e2V3FpNU7+K2p81HHb/9azL++zW157fYFufq9dfgDQSLUKjINWvQKBa8PSmdGVBg3psWhkCTuy0yk/565x9dNzWTYnhShALUEyY8AQ1bb3NHaQgeGYge6vNbyGCK1aJPaZ73yuQN4Xa21a3dBM5Gygoeb6nimqIoHHRZcex80ZBjTKHGKputgrFUEOLX5MyymKSyP/B/f5Z7MV+qvWBf9bNugvJcc4IyRaay+xECEKlQrr7d722XuOuRcjTD1b6EpUCptKCB/cxN4Dm60uSAcaUQwPgpFp31Hrv81AnIoAPiCoT++g6MHU2Qtwh/0s7xiOVf8cAX+Pft8X/Q9zd6Ocyl3lxi1ik3NTp4tqWnpu32ksJIGX+cDly5OiuavaXEAVHh8XLplN5Ud9AsDfLulfS5mWYZf8urwB2W2210YFBJvry7B5fDxi6UZX1DGpFIy1hyacy1JErce37elZXSZtZlwSckHbhv6iFDfderAKJRyqF+4eYAJVb8wTClGFBoFK5Rty2ZK0GOI7KDVodbN7GFJzOmbwNSo1kA/LTaC2kQNgVJnaB50JxXX29Ka+MbxAp8U3M7WnWYAqsplVm9PZ0nEBzTrBrY7Rtr1PfHWbaTpW/uy1+2bhrR01aFPxuG2Qdq40Pc12+GMl0IB+ce/H9pyCUIPE8H4KHThwNNbarxxhjgmJk0EoNHTiN1r59pF11LQVIDL3zrH9sT0E9nV0L1/iGudtW2aQSVJ4sOhmcRpQmVzBYO8UFrLuN9y+W9xdWvt8HfuzUzk1NhQbdUeCPJaWccDnXwdHK9RKkgy61EpJAaZ9MQqlSRp1Aw16Hkwv4KntpZi/V1Gshn94rh8YjoAFq+fbR43hQ43CyODKNUKynIbCAZlzIMjebWqjsdqanmwuZ7v9F4W11lZn6VBnxWGITOMJQZ/S//wvrzDIzEbNcRVeDguoGNmdAQZBi1Z8SYaU/T4PQHuDovmzPj2A/IGhunRFGZQU9F6v0GNhLuviUC4ip15Br5zPt7BB+SEgAeN1PozWVO0p3VizVtgq4S8H2H1q/Dr8+DrImF2T4nsA7oI8DSDxgReJxQvhw3vhuYkC8JRSgTjo9CUlCmMjB8JwPjE8dwy4hYAMiIyOCvnrA6PeXHTi9S76jt874/aULuBvy37Gwt2L8AfDNV+qzw+bk9PwLzPXODmQJDHi6qZsmYHC+vbL5MoSRKP901tOeajKguOQPskJfYOlgy8fFJ6y3zaaLUKsx8+/6WINz/eyrgaH2tLGrl1czH/K69jh93V8vBwyfg+qBQSNn+AcRo9DxuimajXY8kO9R/rIzS87dinVinBmiY7SLDEYuU3yYNPLZGu0bQbf+RJM+Ctc9EQoUJT6cZRYmdkoZezkmOIznMQty000MxRbGdoTZArEvfJpS3DBbIRV3NrgC87KZ5AlBZNsYOGkWYA4iPbLrwBQMlKvG4X5Z7Wmvry/HrkpU/AsidC04oad4eCcNzA0ACqQ8XvgaThEJ0FA88AlR7XL/fjcOw+dGUShB4kgvFR6sL+FwIwr3AeT617CgCLy8Kiks6zHL2y+ZVuLcPMtJmsqV7D3cvv5pYloQeCaLWKe/LKiVGriFK3HexU7vZx2dYiHsivIPC7gUUxGlXLIhDNgSBza9oHm1kD2uevdvtag7bdF2DjgiI8ngD+oMxXq8vZtqaKWWhYUNHAjLW7GP1bLrPX7eLu8mpGjgtl8Xq+vg6VTolyRzMD5NCoZ0WkhsJOcmsPizAwqsTPB81NJBe58Xvb1tg15U5c6UbUviDWsVE0TI4hqFOgUCnw6hSoalpHZLusXuLynNwTH7q342MjsJc7aJgUjS9RhzvbRFS5i0C4CoVXJnpVA8FkHWPd/2pbqJi+kDkdzbpX+CXzA/4zw8jkxABVVjeerV9DeHIoJeXoq2DSrZAzq8N76zXGGBh+ESjVcOarMOFGnOEmVq85hV15D+P1Nuz/HIJwBBHB+Cg1OXkyOmVoUNJHOz7igV8fYPpn08lrzOv0mEp7JRZX14OqDoZaoebaodeiV+kpthbj9DlJ0KrRKxQUuDxoJIk+Hcwh/r7eyiOFle1G+l6fGkv8nibudyrq271/y8wcsuNMbbYt2FqFLMvkO9wUujxE/a7/1usP8vxP+XhL7AwschG724G+woW/2YsqRs9JgxM4OTUGhzpUva3aGXoIcJbYGRzWcc3xBL2JYEBmekQYPk/7GrwUhEaVTLw1gM+sRgfYjouD1fUo6zzUTYnBm6onEKlBJpS5K5jfjBJIUYceBiJ/tWDNMRHQKTButaHLsyMrJRTuINm6Zoye1ulrRKaHpgiFJ8OZr6ALujhvw6W8EvEBRqWfYMpoyofeTHm/yyBhyOE3lUhjgIm3EDnxEZRKPeXl77Hyt2ns3HU/jY1rCAZ/1w0Q8ENzNXSV4jXY8wMWBeFgiHnGR6lSWyl/GfQXXtvyGn7Zz1cFX+33mJMyTmJz3WaOSzuu28oxO302j695HKPaiN1nJ85g4JNhmVy4uZBqr59IlYKrU2LYYHOSZdDyeXUjKVo1L5fVEatRc8OewVsARpWSv2cm8X87S9lud7Oyyc6kyNbBTxF6Ne9dOZY5b6xqGSVcb/di9/jZbnfR4A+QpGh9/tRoFMQnmKivc1KzobpNufUKBXqzFqU3yI0OPT5n2yZwWYZzVGFsk10tK0RcnxhLjF9CLnXhDcok7HR0Nv6KrG9DaTIVvtAeeydPKd1B9FY/yjoPaBS4+4chBWWUCgm52klwz7UkIGZZa7eCrADn4HCMm60MVX/R9mKZ00P9rdpwKF8LJb+CPpoK4nAEVAxecyJBGVSKZfz95AFcMSn9oNOR9jh9JAqgT9rVFJe8RiBgp6LiIyoqPkKh0JJqnE52viX0wFG2Gmq2gdoYSiiSMhrCEsFRB8UrQrXuouWhBSrSJkDiUEgdd/g9hAjHFEk+LCYa9i6bzUZERARWq5Xw8EOUn7cXBIIBzvv2PPIb8w/4mDUXr0Gv6t6+wne3v8tfBv2lzbb5tU1cs72Yy2P9/GvgMPxBP7Kk5ebcEuKVzbxfG0QGTo4xM85s5KrkGCRJIijLnLw+n03NTmZFh/PB0Mx21zv/1d9YUxxqxhyeaubrmybxa2Mz52wqZHwzOBvdaPRqAv4ADbVOzNEGjDE6XI1udmypY2pUGJMrZRwZBlbhYdouH3Kw/a+JWqekOkPH21WhoHhdYiyJlgCO2j838Mk2OpLwdW2b4VX9wrEka5HsAcLXtG+itQ+PwLjJijlaxcWq09rGlfE3hfpf836EbXsC9egrua3qBAhP5LIJfTBXLsed/zNvWwZTrBvAa5eOPmzXRHa5Sln52wzU6kh8vtDnpFXHMOmnnUgzH4DB58LL40MD1vbKmhmaKmWrhLNfhx3zYMm/W9/XhocCd9KIUOtA1kwwRIkALfRavBA146OYUqHkrRPe4qxvzsLi3n/zc9/Ivt0eiBcWL+TpdU8zMWkiOZE5BIIBPtjxAZcOvJSHs5N4sKCSqF1rqar+nCsGX8Ht6dl4A9FkmBw8UFjD/Lom5tc1Uef1c29mIgpJ4o3B6cxet4vFFhtvlddx1Z6+5L3GZ0W3BOO9qxep9vxR3RqhILrATe0+STZqqkOLR6RnmomLMzJUqcfnbsbsgQviI6kK1tARZYqBFB/olQpcgSCvVdZxTVIs5trQ+8n9Ijn5hiF89sharHUHHqCbo9WEA+5sE7qC0PxanT1A9AoLzgQdvjjtnnSbrfxaJbEJSmaZnkT6/ZRctR6WPwMTbg7VACvW0aSMpn/fvlw3LSu0T9rpMHw6T/z6HGurK/hlrYKzpo8/4DL3pl15DwMweNDzaDQx1Ncvod7yM/KljyLFD4UPzgaNEabeCevfheYqOPct0EaAHABJAfmL94zW3vNheWyhUdvFy0OvFSrIOSHUb50zG1SH54OJcPQQfcZHuUhdJKdmntrp+yPjRhKli+LRyY9y8YCL/9S1ZFnmpU0v4fC1rhwVa4hFRubp9U/zVf5X1DhreHrd0wTlINelxvFk3xS+toZjDhvMl/lfMjjMQLbRwEVJcYQpFcRpVEjACyU1ePf086XqNNyVkQjAAwUVlPxuxaP/m5nDa5eOYmSamRMHhzJ+jTObiNOoCFcqSBkYzYgTM8jqG9XmuOLdTdTWOlhoa0Zv1uDc3UzVbzXIQOPJCTC+dVSzP0GHu6AZudbNsLA9CTok+MnaOle7Ylcj236pQKE8uNpVQBX6tXRHtwYAV40TpVqButSJN6Ftv3fApERn8ZATvZNo+/L2J5SDoNbB8v/A93cRKPmNZxqncO3U37Uq6MJRzLyfcRfey1kThxxgYf1QshKaSg/qHv+MYUPfxGTqT0Pjr5hMfUlPv57Roz5FEZYMb8+GoRfApV/B5Nvh5rVwxy7QR4YWqFCqYftXoRrwBR+EmqlPex6UGlBqQw8s2ggI+mHXAvj0Evj8clj7Zq/dn3BsEjXjY4A70Pmq9fmN+TT7mnk/933+M+0/f+o6r215jXe3v8spGadg3JPOUSWpeOOENxgVN6qlH/KvI/+KL+hDpVBxWXIMw8MNvFNu4NaBocAZrlYRlGU+HpbFAJOOsb/twOLz85etRTyQlcQAk545CVH8p6iKBl+AszcW8OPofsTsGdylVEjMHpTA7H1Sb5a5vdR7/YxTanDUNeP1BAiL1CED/Yx68uwuTo03U+zycK5bh6Op/Wfm8QeR+oahjtMRrHQip+pxl7mYFVSTkRJNnttNsy+IZ0AY2h2hoPzbVwc/N1btCyIrJdT79FMH/DIBf2hhCuMWW5v9vSkG1HUeouI7GZy34pnQv+lTYOiFzK8K5+bTxnXeL6xUh74OhFIVCmjf3w2mWBhyfmiucA+SJInMzNuJjfldLvVVL8O0u2HYBa3bVNrQ1776nQRDzoW1b0HcABg2JzSVq3wtTLgxNK1KrYeVz4f23/UdlKwIBekh54qma6FHiJrxMWBr/dZO32v2hYKGSqFCIf25/w7JpmS8AS+XfH8JPxb/CMDamrUUNhXy8G8PIyGhUqi4esjVbZrDh4YZeGZAJmmG1hzQCklidISRDVYn7j014p8bmjlpfR7f1jahUyo4LyFUs63w+Pi/HaV4OhkhK8sy/ymqIghUrK9l1/Z6dhc0snltFeMjwzi3XsktSXHEK9Wc69IR8LQ9jwRELqhGA3jTDLga3BCmIlgXqpF77D5Sdjo5PagnUavm+cpaTKn7zy3dmagCBzXHxbY0Ue+PX69EZfGiDto638mcFqr1OeoZNWgQcWG6zvc9WJIEJz8JU+86sEAsy9BUBrnfhLJ+2SpDI5/zfgy9dwDaBWIIBcr+p+z/4L2pRsOTQKWDoA9Sx4QCMUDCYJh4S6gZ+7h/wDlvwZhrICwBvrvjgMonCAdLBONjQN/IvpyUfhLjE8d3GnB1Kh1K6c+tH3ta1ml8euqnXDLgElJMKQBcMegKmjxNLC5d3BKgaxw1PLLqETwBT5ssYB0xKBXckZ7AjD0pI91BmVt2lLLL4ebMuNbsVD812Lh8axG7ne2XLXy30sJn1aGBPupxcYycnkb0qX24dlgqM8qD+DwBJJUCT6oeR70bt63jdJvSugaMi2tQxuhQSAqU7rZBO2D1MUKr468ZCQTsB7828V7KBi9unQKlK3R+vVlDRX8DplQjxkxT+/09QRRKiVhjx33bxA2EMdfCwn+AOYXUlJQ/XLY/xFEPlRtDqS5XvQrPDobnh0P+wlAT99YvYdl/QtORdnwLFRtDzd8HK2MqaNt/Pp3KPj40aOu3l9tuH3U5mOLgzvzQA0bfE0M16IwpodHYO787+LIJwn6IZupjQFpYGh/s+ID08PROF4Swe+0kGhP/9LXCNGFcP+x6AHwBH5/s+oQBUQMYHDOY74q+I0Yfgz/oZ27+XMqay+gf1Z9bR93a6flGRRjRKRVYfH5uSYvn0d2VrLM5OWtjPk/1SyVCpcTqD80n/bmhmf+WVHNpUgxj9ln1KLhPbavQ46VQCxOVesy/VBAAfHFa/MjE/1SPTMtMpQ5JgHZZazpOb4oeb5QG0xYrLqsXgzuANlaH2+5Db1Lh+gNBWdXkI31+aKqVITOMRxvr8FXJKCRI02u5zKzD1RR6YHD1D0O/00Z8igpN1cr2J0sZG6otBv0w5Q4YPgfK1kD0QRfrjwkGQuktdy2A16dD2sRQRi1rKdhrQwtA9JkU+mBTx4YCstYEij/3YHhAlCoYdmHntXHNnpYarSlU64ZQ2Q0xHe8vCH+CqBkfAxaVLKLB3UCWOavTfXY07GBb/bY/fa1GdyOrq1bz0qaXOG/+eTS6G3lg5QOsqVrDpKRJDIgeQGp4Kmdkn8H6mvXMK5xHYVPX/aqDTHouS4om3+nmo2FZnBobQYMvwJXbilsC8V6fVTfyS0PbBS/qvO0DoqyS8Mfu6UvcM8BKEZBbArGxjwmtaf/9pppyF6YtrSk8fZ4A9nIHMjJj1j5KbFznQUUGmiZ3/ofdlGJkQcCJT5ZBgiDQHAigULX+2soKCSkIaf1M0P/ktidQakLBV6ULBZbhc0LbU8fu977+tGAQqrfCxg9DfbFZs+Dkp2HsNaHBZMljQjXm2h0w+gqI6Rfq282aATE5vdsvezDX8rvAUdtzZRGOWaJmfAxQKVSc2/dcEozt1xIelziOgVEDKbQWsr5mPUNiD3AUbQdkWWZRySI21m5kQtIEYvShucFWTyhYfbzzY+pd9Zzf73z6R/UnyZREvCH+gGrkffRayt0Wbt9Zyr2ZidR7/ayyOjrc9+niakxKBecnRvFGWR3PlrRvvjXJEtKeAVJBjQKVo21Qd5Ta0WeFsRmJPmoNcQEFGkcAe0XH1/y9gE+mafx5DFxwL/Un3sxud0q7WnIwQk1togZzB8frI7U82Fzfppo+JNzAOS4tjvrQ4LKgAgKa0A4Ztveg9NvQjlFZMPbaUF9seAo0lcCA0w6o3AD4vaGlDLVhrbXDA+W2hhKM1O2Cwp9AoQ71I5etgl+fC003Cgbgp4cBOTR9yGsP9d9GtZ8zftiZdneoSb3vSaGatSB0E5H04yhO+rHX7UtvZ2jMUOYMmMOEjya0LKkYb4jn/0b+Hw+ufBB/0M/lgy7n9tG3H/T565x1vLn1TcxaM6dknoKMzJLSJRTbiplfOL/lensNix1GkjGJ7Mhsrhx8Jf6gH51q/wOKrt5WxLd1VrINWr4Yns382iYeK6rC2clqT125QxeB4d0iAJomRWPa2YzK0r6vWKlWUJGl4/0qCzNiwplikVqaiA/EwDgL8Z89QMPpd7DZ1jbYyArwZZrQdDJQyz0gDBUwz2pljjECX5GdoL/119WdZUJd4SQmTMEcxT6JPuIGgKQKDULK+wHGXAXpkw+4zKx9E374e2g+7o0rwRjXdV+sqylUy3XUgyU/1Dcc8IKzPlTbjUyHkZeFasv1uwAJNn0A6VND34fFhfpujxSlq0MPGGHtH26Fo09vxQvRTH0MSAlLIdeSy6rKVS2BMVwTztuz3+Z/2/+HUW3ko1M+wqA2UNBYsJ+ztRdriKWsuQyb10akLpLnNjzHM+ufYW7+3HaBGCCvMY8EYwLlzeX8e9W/uW3pbfvNEibLMvV7mpvjNWp2Oz1ckxrLjalxXR7XmY8DDoKa0H//MK2qJRA7BoeHgmSSHn+0hoAvSMJOJ1clx/KzxcZ/VaEas0rT+qtjSjFijO84WUpubTSlc54mcsnbDIizELNPs7UUpNNADKDb0YxqRzPX61x48pvbBGIAf5gSpTtIWoqrbUurNmJPtqnyUF9n8uiD+3CWPwMRyXDaf2HVK+DvYGqcLENDMWz6BDZ9CIVLIP9HiMqAzKmhPt+ozNASiCMuDR3jagBnAxT9AtHZoUQbCYMOOBAHmr041lW3y0lOTe7B3d+flTZOBGKh24l2lmPA6LjR/OD8gZuX3NyyLSAH+G73dy1B8IofruCm4TcRkDtOrt/obsSsNbeZm2r32qlz1VHjrCE9Ip3bRt7GxtqNpIR1PVrX5Xfxv+3/AyDRmMhpmaeRGdF1E+XLSwu5p28M1zo9/Npkx1Rey6gIA1clR7O8wcZqm7PL43+v0ufHMjGK6OUWPFYvBsCTYURb7qJpfDQahx+FK4iy0YsUBGWCASrB5g/wz/pa0mK0nBgRjllWsMznZmR557Xlwiod7tP+TfaCBzGOOokG5QSCgQNvkEqt2EYt49psC+gUyHv6uhOG9QPN5NBc2IShcN47oWDxR/tdT3w8lKkrLD40wGlfrqZQP29TSWtNN3FoaFrScfeDtSyU9zl1XCg4z36ktRzGGNBHhYKvQnlQSzTKskzj3HzcOxrQD41F0uzbFy+HmtZ7O0tWfX6oS0Ah6jTCnyf+Fx0DpqZOZWzCWCQkIrWh6UDD44Yzf/f8ln3cATdvbnuTOlddu+O31m3lnHnnUNZc1rLN5rFR2lzKxtqNlFhLuHLwlaiVasYmjuXWkbcyO332fuctqxQqTGoTr299nafWPdW+xrOPjaWNFFc0c1qzkkeykrk2JZYvqxuZt64CaX09E+wwrkkmVn3gz5c7kzUoAjLexFATecCoRGnzofQG2TnAiLrKhbtvGK4B4YQvreXUOHPoQAlKnR5er6rjyeoaljfYUPYL6/xCQEUVrJ/+CAq/h6H6HSj3rAJlCOu6vAqlhLa6rN1258BwTOubiM8IJ31UamhQVuIwuGIB+Byw/p0D/hzaGXh6KBADeB1QuRm2fw1N5fDLk1D4M2z9ApY/FRok1lgC0+4JDdRa9jT89mIoYPeZBHU72557wZ3wWDI8kgivTQsF8QMQsHrQZpsxn5GFQvO7QXHxg0KBuGjZAc9T7hYxOfDL47DkkdB8aUH4E0TN+BgxPmk8s9Nn0+RpYlXVKvIa8jCo2w7OsXqszM2fy9DYoYRrWvtGLG4Llw+6nGRTMgC+oI+LFlyERqnhnjH30Ohp5LpF1zErbRbXD7seCYkBUQNa5hX/nkJSMCxmGAqFgvU16wH4PO9zrhx8JbGG2A6P0amV/P2rrWhUCkaWW6kemYBDBQuXFFBv98Du0DxiSQH90824Bpkp8bZvIt/XUr+bkYPD0ZQ68MVqkXwyO89KJLHWR6VaZvXpkcxwq1DIkFNkZ2ipn+iMGD6pseDZZ+EIryyj8cP+sk/brX7WKKYRa/h/9s4zvI7qatv3lNP7Ue/VluXeuwHTOwQTagg1PaQRkrxJvhDyprzphRBIp0NC7waDAWPce7dlSVbv0ul9Zr4fYyTLki3b2GDDua/Ll31m9szsGUvnmb33Ws+SqLD3YY77iJozqAke2iBEVTRWeK4cvE0EOawgAKddMxr5nf/VvZave0Jft139Nzjr/43Qm8OgKtBTp08nb3xYz8f1FOtBV848aFyhu25N+YweqOUp1U1FvGX6tHagBXa9CPO+rkdyH8jcr+p2lCYHXPXQ4U1CGlZA60bC3ZX0rbQheyWyL1eB/OHbv/s7WHGPXv/Y9iHlbs3/Fvx5BsSD+hS8bILKYQxJ0qQZgXQA1ycggAtA1VReq3+N1nArsVQMr9nLnzb+iVByYM2y0l3JXt9ezi05l9+e8dvDnu/Xa39NoaOQa8dcy5q2Nfx09U9pCbbw1KVPUeevQxIkbl96+7DHWmTLILOPYkcxl1ZcSnVGNacVnjbsMe/WdHHjv9YwTPGkYZEkgaKLStkVTzA3JqIpGpsdApGDXLpyDDLn9wk4fSnc7/WgidB6bg5hq0hBTRjbVt3V6sD8Y6vHxKuuFGt8A89uvMPCZd0yieiR5xVXZ3WzuzfrkFPWGVkygqDR3Tl46SBS7cRcG8IsCtz2u9MQat/UBXLi1Xo+sWyGjEOnsQ0h2ge9deBvgYKp0FsPL3wNUKHiTKg8W4+QDrZD8WyoexsKp8GGR3Qzj+81DkwRK0l48RvgLoKCafqI3ewafL1AG4Q69EpSh8LXCH+cjGrIpi3+T0SLQLb2eaTiarj2ieHzkNu2wD/O0p2zrvyXniZ1oll1vz793rhKfy49NXqE+LyvH13QXJqTlnQAV5rjiiiITM2Zyq0TbuW6Mdexx7eHSGrwOmtK1YXk3eZ3iSQPvwb7hYlf4JJyPV1mZt5Mrhp9FQk1wW2v38afN/6ZP2744yGPVQ4o+j4paxL/Ou9f7O7bzbLmZYc8ZsGoLB773GzspiObzFEUDU9Cn7oWZJFYMEHeFh/yQcuoHckU73rhpXIZxWVAUMGcULHEVGxbAyh2ieBkF4p7IOc40hfn3C6R2/IyeV8StgWjbC6S6Kw+dDDXgRhMIopkPOzasVFSqV7z5yHbE24ZMaGSXepEEAUYdTZUX6rv9DUNL8Sqoosu6NHAW5/S13xrl8Lqv8Oe13WBi/r08oKX3wcL7tTXoMNdehCWpwS69+iOVF179NSe8Yv0UoXxoD413b5Fd7Aae7leL/hgIQZ9dH2gEHfthrd/Ca/9QBc0X5NuBjL7S2iiCS2h4vK8hRRv0l27nrwJuvfq7f0tA+fJmwi3LtELQJSfcdjnf9woO11PHyuaqT9fd4n+ovHgpfDoVRAauuyTJs1wpEfGn5CR8fvs7N3Jz1f9nD19Q8X4fcZ4x/DD2T9kUtbIUa4rWlfQFGjipbqXKHeXs7ptNbeMv4WX615mQ+eGYY8pcZbQEGgAYELmBB676DE0TTuigvZ/eGMPf3hj5PrMGjD5onK2Lq5nymlFdDokOhY3MP7MElZog4Otrk6Y6LIIqAIkBCgLaxSs86HaDTRW28hrjWNpiGBoGxpVbMsy84otOWiU/MOsbJJ1ocMKrckikUyoIwZyFecrNLYOjAIVl0wqw4SpLsxp14xmwhmF+jpp7ZvQvk0XQlHSp4H9LbD9GXDk6SPYzFGAAA3vwajzYdWfdZENtOlGFhYPNKzUc37L5uvCPPZyXQCtHnj+dr0EYc44ffScisOdNdCzVx8FHyu1b8FzX4ZIDyj77UxlC2RXExSuI5Esxdt9A8KUa/QUqdd/CJ079BrEX1imvzx4y/VRuWyCkrnH3pejIRmDBy6Gc3+iXzPap9t5bnwYpt4IS34EmaP1qPSsqg+nT2mOO+mRcZoTwku1L7Gpa9MhhRhg0ahFxIZLZ9lPTV8N/rgff9zP83ufpz5QT64tl/NLz+cHs37AS3UvceXoKw95vFHUpzTdJjeNwcYjFmKAM8ccIpXpoHdKQQApqjDljGJad/cQUlXGLyxmw+J6So2DnbXq7VAV0NhKkgktScqfbUNMaQhxBVHTkOIqKbeReLmNVMbgiN1wV4xzu8VBv0g/7erk2VwNe+Gh14LjUeWIIqoPFGIAxWFAjKnIRpHRM/cHWbVt0sULQY/wDXfvH/3+VzfheO7LsPNFfXS86VEYfZ4+mi6apUc/+5t0kcuo1N2wkmF46Zu6heXrP9RTm/a8rgvdd+pg/jf1HOYvr9RHsNnjRryPw1KxEL6+Gb67D76yBgpnoNly8Bm+Q1IpxpvzFMLn39BFrWAq3PQyfH0L3PyqLsBlp0PrJn2tumjWCBc7jrRv1d3E3k/Nsnj0dfRPP6jXRb74d/o6+pM36evJadIchnQA1yeMen/9iG3+ve3f3HvWvYfcv7FzY7+D1rml5/L9d79PJBWhpq+GEmcJGzs38unRnz7k8TU+fWR7XfV1eE3eIxZigLLM4QXuMxmdvBrIpCe1X7w02LC0gfHTcskbl0EtkOqLk1/goO6gwK4GTSHTaaAvpdCQaybTIGBoi2EARtXpjluKRUSzyASr7HhWDv5i7Ssy8zXMuGMaW40pnu7owyoJ1Fg1Prjb92CkQJJYiZVxRU5M1v0vFamEPnotmQ/bnoLC6aAJuktUtE9f15x8vW4Gcv1TYHbqo7qqC6FxJeROgP/coOckr7pPF5ipN0LdW/qINxXT050u+KU+7TzuU7oIB9v09CTDcagAJRsBI2RVoXz6RXqf2ovsNOE5x4XgPG9wW0HQ78F8wChl7lc5rtQs0YtFHC4Hest/9OdiPOBnUhD0tLLzf6FP3b/7Oz3i/I274NJ7jm8f03ysSI+MP0FEkhE2d20esV1ruJWHdjzEzp6dw+7Pt+ezs2cnTqOTpkATV46+ErNk5qySs1jatBSAu1bcNeyx76c7/eq0X9EUaGLR6EWH7UtnIMb/vbqLS/+8nB88u5VoYvg86Md6s/hCdAkWYXCAVv2uHjp39dGXUoiFktim6dHaTklkslH3pi5PiWySkqjAYjXGm1fnsfuKPNZem4+2/z1BiqqEK+24Vw4d4Tg0AcPOIOH6EKP3Jfmxycs5jRp5u44u9/lIiBdZsewOklt2wFqsktCDrAJN+rRyxVn6tPPeJfpo7fon9Qhf2TxQp7j2TX1UOf1mXTTmf0MX5Uvvgds3gqtIr02sJPXRZjKqj64bVuh/2rfoU8NW73G9P03RSLREcJ1fhvuKUWDPJtUTJdUzUqz6cab+HcgZf/g2kgEOLryiafDWz+GPk+GF2/WylVc/rL8w1S49Yd1Nc+qTXjP+BK0Z/3jFj3m65ukjbm+Vrbx+5eu4TANf/Lt7d1PuKue212/j/83+f3z6pU/z7KXP8uSeJ1E1lUd2PtLf1iSZqLZdQEdqHe2RFjT0H7Wp2VNZNHoRF5RdgEE8fDGGh1fuozuU4KUtrSyY0ENA2INHOZ1/vt03pO2djm1IbTU0F8/lkZ7sfrOJKReUsV5LMjWgscoBRUYDsgCGLX1klbl4z6jglETKJJHNBxWVKDIYGJ+SmLDaj2oQEZMqpvoj86c+WsZlthMwZBNKGlFSMCq6nt3maYT8A30KTnHj2Ojj4q9OomT8/vSdZAyCrboQeMuPzuxj54vgKdOPScXBnqP7UXfuBGeBHtVcOl/fryT1YK3hgrKOM/GGAJFNnUS3dqOG9JkMY7EDOdOCsciBfc4h0puOF/uWjxwN/ciV+nr5598Gi1vf1rkTnrwZuva/yJYugBtf1J/fxkehZT2c+9Oj9/xO85HxYelFepr6E4KiKmzp2sL4jPGYZTOCILC2fe1hj4mkIqxoXcEFZRfwTM0znFl0Jq/te43PjP0MX5j0BZ6qeYonLnqCu1fezY6eHUPWoSvt02hvHkO2u5oxhWt4q/lNnEYnVoOVi8ouQjqCMnk3zClF0zTKs2zUdNt4se3nOIyvk+X6Cl3+wVHLD8eruNXRjWf9M1w/bRGP9urry2JCRTTCTrdEuSTRtbiB0eeXIo7PINUdA6PARcEuWjf1MnfaGDZaVKL7c6iakkmaSNI838mUPg17VDkhYiwbRRyNG8hZo9fKjU05i1XeRVgPelVOWvRn5sk94MvcYD72IgvVl0DbVj1PuHGlnhrlyB0IgjowD1gygHRihViNJPG9WEdk49DKSInGIInGIKmu6PEV486d+nr6tqf09fYzvjeyECdjuvtY2WkDQgz6UsAlf9BTwaxe/bxbn9TzsiddC6vvh8eughueHZilSJOG9DT1J4ana56mI9LB5yZ+jqSa5IKyC/oDqQ7H1u6tgG6fuaRxCUsalvCD5T/g9X2v8+jOR3Eanez17SX+fhTsAdiFUox5TxJKRHmr+U1MkomxGWOZkTNjRHeuAxEEgcsmF/D1hdO4ovib9MV7ya96EoM8eMq6PWGg2TMGgIJEe39QV7gzgl0UGSfKdLyyj4qqDKKChtgdY/u6Nsbvi/LSiigbQ2Y2vN2I+mozU00m5gpGyk1GJKBBSfKQLcFfMxVeviGP6Awn9jwZR7mAo1hClD5Yyb+yjCDWNQNF680b3yQjQyQUGBgVq0YRsy+J0SLj8B6Hddr3SYRgxZ/0KOmimbowfwQkmoN0/HnTsEI8CPk4fm311Or+2Y0r9bSqjQ/Dc18avm3Utz+f+B09wG30+XDJMOvAxbNhyvX66Po/18Mzn4O/zNGNULKq9OCuhy7Xg+vSpNlPemT8CUDTNJY1LyOQCLCuYx2buzYf0doxwMM7HqY31svU7Kn876r/BWBfYF///t+u/y2xVGyIp7Xb5CEp9ACQmbMVlzAFWZQpd5Vzy4Rbjuk+DJLINWMvZ3dHHxuDf2P29Pd4d9Vgk5CHe7O5bdrF2Pat4cqSAp7qy8DqMTMpJbHpvSYURa8NbG+LsXltGwB7d/eiW3oIoGnIgkZmT4K5G16g0VrEtrkzmLXiRf464wISmsaGRJzuaiPFeY8i+8rYozzA7KKFTFxzCUry6CtIASSFoS9GojB4WBwe68C+yU9OhU3PLz5elMzR/3yEhNd10PdsDYwUYS4KOM8+ji8LNa/rrl3ecj0qXDLqQWs99WB26FPz257SA+FcxYCm5xHP/pKe13w4zvuZPvPQ16DPMKgpOPtuvbRlw3J9mvuzz6enrNMAaTE+ZfHFfPxl8184p+QcZuTOOGzb3b272di5EdDF9Wh5ue5l8m35uEyu/trE73Moy0tVU4mpfrJtHgocTpY0rGZazjS+OOmL/W00TeNf7+1DFOC6WcWY5JGnrRt6wizbUMr82efRHF+HKMxD1QaOUxH5W28R0wsyOC+4AbR5hNwG6pa1EN6/9rhr6/BGDKe7QszrXo4ai7A6/kW0tr3khDdizrfSOm46F4QiPG/Tp8Yb4yp5GVdiTj5LkTqaICbEEivK/ipMqgjiEeiyKAlYsyy0OlU2Lfomi168Fy2h50EXBDbTwUB9aU0WEYD87OGD2E5V/K/tI/jWUP/tg5HcJjKur8ZYdHgf8CO/cAsIEnxrf9WnZAya1+hTz01rIO7Xp5knfPrYqzQVz9b/HEjeJH19vnmNnot84a+PvahHmo8NaTE+RTHJJu6YfgcmyTRi279t/RuBROADXU/RFKyydYgYHwqjZKDU6yXPlsc3pn2DH87+IQIChgPWyeIplVhSQdM0Fm9r57LJBSOed15lJlOLvSxftRCLcQHVZb1YzDHW7Sga1G5d0EqNaT5TZhWwMh5ndnUmm1bqbk2T7TEWyC3c49OdqiRUvqcuJbCphuD+4x1qiETlFFJr38D2wkPsvv1nXP70/fRd/hWW7Xcqq0k6MGXeSFkY4mt3I3T8E1fmhXS48+iptJG/uIORvmIFUeBvBGlpT3CDLPULMYDfXdlveJ0osmBpiSKKAmVlI7+0nCrEan1HJMTGYgcZN4xFchzHykyuApj1+YHPBrMuxKBP158oyheCLQvaNsPav+tCfN4vdEezNJ9Y0mvGpygW2XJEQgxQ5CjiM9Wf+UDX+9e2f9EWbhu0rcJVwf+b/f+4Y9odQ9p3R7t5pf4VJmdPBsAoGQcJMejFH4q8VjY1+blg/JFl5JpkiW+fp7sZRRMysqywW7uXCRWD1xllWaB6YRkr7WCXRGq2dDLVEeVL3gYu6HgNadtb3OnYxndtm/l6+8MEGga7etl9PbRWjQJAQ6AsGcUoiFTV7SbToIthb1JFAJzNmzit7mkCHS0YDDtQDSKSopHK0v9/VMOhJVlJqZzm1kd6lzesGLTPqAwExMUzjBjaYpQUgXvK2CN6Vic7mqbhf2XkvHdjiZPM2yaQaA4Seq9lxPYnPaPO0XPBx1+hf17zN3j9BwN2pWk+kaRfxU4h1IRCYl8A82jPUR1nN9hZ2vbBcxyrvdXs6t3Vn6J0bum5XFV1Faqm8ocNf+hfN5YFmem501nVtoq17Ws5o+gMVFU/SjpgrXPxtnZ8kQSjcuwYjyIop6l3QKQaWj1kjc7F7ayB2gF3rnHT8vAbBGaqJnq2dBGMx7hAW0dg7zbeN65Utrw77Pmt4+bwVIuBSaMS5BuNJJxeas12xuSN4dU6mfJRMt3o9+qVksim1zFluoiHgnTWb0SZfy7OlhixAjOpTBMxt4xrde/w09YaVKYkXEKStQUTOX3tgCD3CtmAgmoW0Qz686kU9yA5hhZAUMJJYrt7UfriqNEUWkJBtBpI9UQxj/Fim5ajl6hUdK/uQceGEqR6YyRbQsTr/KS6oyjhJGo4iSHPhn1eAbYph3A++wAo/jjJltBh2wgmicwbx6L44/Q+sRstrmCdloNoPoW/ugRBH4Hbc6B5HfTW6lHW256Bzy3Vi2yk+cRxCv9Ef/JItofpfmA7GZ+pxjL2yEvE3TT+Jv69/d8f+Po/n/9z7lp5F1u6tnDV6Kv6LS/jSnxQAFe+PZ/GQCMOo4PF9Yu5c8addIfidAbjOM0Glu7q4PTRWfx+yR6iSYXfXTWyB/b73P9OLfe9Xdv/ORKTKZBsoA4Ogqnf2Y27w0JgvBs5qhBISTR5R+Fi24jXENpraXNOppg8wvMLMSnF7IilyFgwjehrvcgRBfYP8rdFRbwl53Jv8jd8ITCJqNWFwWXCuKGzX3wPLhuRzDP3+1zbsi38srebp7Y9iFgzUPu395Kv09GhoLhkImU2HGv7yMmVKFk0UJ5PjSvEdvaQ6osTfKcJLTb8WnKsxod/8T5dXLOt2ObkEd/Th2CSUKMp4vUBtNjw1aaSzSH6/rMbpSeKaDcQ29mL4k9gKLDjvrgc0XLsXyGx3SOMBEVwX1yOpmr0PLAdLaFgmZQFxxq8lorDst/AmT84tuOPN1lVeqnLJ2/SP6tJ2npeJ8N6GUZj5kfatTQfPmkxPoVQIylQNVqe2YpnQzbeq8cgGEYeUTYFmzi35NyjMvw4mDOLzqTSU8k1VdfQE+3hOzO/0z9NfrBvTGOwsf+YNe1rAMh2msl2mlmyo4NlNd3cNK+MB2+ZSZbDNGi0PBJ5LjOB2ICdZSIl0b77Btzj3gGgyJykJyESCCQIBBJUT8gg4jDiDPvI2fMmh3bcHkDJHw0h6KqLsaWiCDducg0yPRuSOExRUNR+MQZQDKP5dHw+kd4GhD4flrWd9FyUh/fFgWl9DYhX2km49APfF2MxpfDUpr8g1u3tb5ssHsO2+BhARXEZcWzS1+kLfRtINKkYKyoQBIHotm76ntwz4v1osRTa/htXwkl8z+49/AHDEHijcdDnZHsYQRbwfGrUUZ8L9Hzi4NLGw7axTMjCOj2H7n9uI9Wj34DkNiEaj3HNXDLCgm8d27EnirGX6xWm6pfBgm/T3bGYvkQNY6v/76PuWZoPmfSa8SmEtj9tRhUFott66H5wO+p+e8hEIsErr7zCU089xbJly2hvb+8/zmawcUnZJQgjhhMNZVbuLC6tuJQvTdZzL2fkzuDGcTce0Xr10qalhJIh9vYNfPkvGJXJ3z87HYBcl/mohBjgsskFfP+C6kHbegJmdm4/HY8jTlwR+KyrmYWuIGgaTW81kYyn6ElKGBzuw57blpWLNOUsag26oURdTR/168vpMs7izNpGFm34G2WWODHXwDvsVGuCsdsexPpOMwCJymqU8RKODb7+NrFKO745XuTuOKKqYdsxEAQX7E3QNe26Qf3om7GIVEJFA1Tz/unpEgX3qqdo/tKXiW7ahBpPYcizMaQm5AiowcTIjY4EScBU4T6mQ9VYip5HdqL4D90XwSwT3daN/9V9xPf69m/kg02XC4LupX0yIQhw5b/hgl9B0yoqtjeQnXUee2p+9lH3LM2HTNoO8xSywwwsbSTwesOgbYZCO+5LK/jXy4+iaRrxeBy/34/RaGT69Omce+65APp08bI7mZo9FVVT2dS16bDXkkUZNFj3mXUjOmX1xfo47T+nHXJ/ibOEFy5/gbquCC19EU6v+mDrj75Igtm/eJNYQmFUgZ/GLjvxpMTMcS1EYkbKew2UbHgCW1YuqwrO4W2/HQCrqHCjuxl5/SvDnrd72pW85PdyuauLgmgroppEkU1sMZdTtfm/KMkkfRcs5PHyswkrGtOsceZveQrjm7tA00hWT0Lq6iDfk4uv+0xUo0D9BTnk7w5j3qXHafcszKQ3z0zZW10Y2nSjFG+mzOiml5AC3fSNP4+6cC6xiEJstB1Da5Rsh5FP3VJEbMN6Wr/7PTw3fQs1MR4tqfa/oJ0oUhJsq3LiDiVxB5LISQ1DQsXnNrLrggKuHztyBPyg8/lidP9zG5qiocUV1HBy2HaGIgfui8vxv1JPoiEAkoD3mios1RkgCAgf0GTlpOPNn+glMN3FNJta2S2uJivrPCor7sRqLfuoe/eJJm2HmWYIlolZ/WK8dVQ3VtVIea1G11824660s7tZX0vNzc2lvb2dTZs2MXPmTOoT9SxpWMKC/AXIooyKiiiIqAeb3O9ntGc0X5j4Bf625W9HVFFpd9/uw+5PKAl6oj0Ueb2HrLp0NLgsBi6dlcDbuRH3+ibWFZ3NGz4nO+uzmTZ+Lzti+YSmfIYqsZfpyUZSrhImil30CVY84fb+9KWDyVz/FDft//eBhpeVwioUTcM1ahSvW95gSrQP0TmbOWuXor6rTxOnykYhdbYh9nQiZZUSqXbiKzJjFkU2T3Myc0+QtnOy6ckyktccQzXLgC7Gvd0pVlnO1xeXuwAUomMcaAIY4xpnfGUspiIXxoJ81LidyFYzWnL4Nd7jTdgm89tKAzvjGgd+XVhEke/aj8zOUVM1gu80Y5uZi+w2k3vHdDRNQ0uq9D66c9DasWiVEa0GZJcR37M1JNsjiFaZzJvHo2kayY4IxgL78b7Nj55tT0PfPgAKbVlYi8vYJq9h67avMarye3i98/Sp7Hd+BTe99NH2Nc0JIS3GpxCJhoFcYWfKzJK21ewuy8csGGnqaEEQBAoKCmhu1qdMI5EIy5Yto6m4idcbXmeUe1R/+cLDMdozGl/cx9yCuUdkW/m+ocihEBCIK/EjMvU4Eur8dSwP/IpPxWcS7u5guvAm7zguIxgxUruvmGhcxuQN8V5zAfNsUaZufgRNVckEhPJqXKMn4t+z5cgvqGlYvVncJ5xOYvdpJJIi8ye/irimHRV9PVhxepDr9WcrSjZM+0LkNIXZeUE2097UI6mNGpRvC6KYJAyNh67olMwzI/cmyNBEPvWT2dg9uvVlsiNKeKNxaKWgE4grkOLzLSrf3B9PZBIFPp3j5Wsl2RRbRl6qUCNJAm82IrnNSDaDPppXVKLbeohs6CBePzBlLxhF3JdX0vvELjRVQ+nV14kFg4QaSyHaDBjzP4ZCHAvoTl8X/x4CbZCK4l1xD+OFWbSWZ9DXtYxYyzLy1XIYc9FH3ds0J4i0GJ9ChNfo68Ahj0K93IUoirS2tfbvnzVzFhMnTeQf//hHf1CV3W6nMaAHyhyJEAMs3reYdR3rOLPozCNqLwm6yA7n0AV6zvGLdS/ypUmH8Pw9QjRNY037Gn62+mcEkwHYH8Ed7mrnjqyNbDZX0pfTxaqt5VSPqWGqrYil2wqJTLiBGZsfBCBQtxOTzY4tO49wZ9vhLtePKMm8U3QhPQEDJGFqWRez16gE4vrINnT2ZdiXL9GfhSzj761GiuqCOf5J/RoaEDGKmAwiYZeMXO1AiqqkHBJySEExiygmCTmqIIVTmBoiVF9WPiDE7WG6/7UVjnJRKW4QMCWPbSWqx2vgkVluXhGTkII5bhu/qSqiwnpkvtixmj76nqpBzrES3dFDqjNCeG378I1lAccZRQSXNYNKvxAjCVinZGEscR574NbJTv0ycObDtJv1NeRIL0y5Ae+2Z/DWbidV/2dWzSuk2zKK8S1GxNoq8FYMLuKR5pQnLcanCJqikmwN4c9MsVTeSk/T4Lq6NquNadljWb9iQ78QW+1W9gh7eKvpLWRRJseaQ0toZNOEUe5R3Hf2fWRYjix9akHBAlpCLVxTdQ3LW5bzRuMb7O3bS0LVA3QUTSGS/OC1fcPJMD9d9dN+b+wlti1c5sgjFgwS3rGG0dJ69hQuZO7kvby7ejYgMHtiLfWNecyefDbKpjcQZZl4JIwgHnnsojx+Ph0JA1d4esghiGfXdgKtumtUqmwU5oa9CDH9/vLHLKCrZahLVKzKgd2fwrm2DyegSQKq04C5dvggpqpZuUw7X/+yTaka17a0smG+FRWNaoORazpU5m/oO6zQLpnjpbI1RlmD3rfWyV62emVG1YUo3zf8/0dXqZ1Ou8CqMhv1VoG4ABMwcFmOm2tyvSMuW2gpleiOHsJr2vsDr9RIEi2pDivEzvNKkN1mBIuMGk6S6hzol2CS8Fw5CuuErP5takJBDSYQrAakD5BWdVJhduke1e8/202Pwdp/QJ9uiCID4xpMbC/Zy+pcM2NW/hhP7TYomAqX3w/eMjiCCmhpTm5O6E/zpZdeyqZNm+js7MTj8XD22Wfzy1/+kvz8oeXPenp6mDRpEi0tLfT19eF2uw953ng8zre//W0ef/xxotEoZ511Fn/5y18oLCw8gXfz0RJZ30lSU1hm2klPz9AC92OqxmA3WsmRvTjtDiKxKE1FTbzd+DYABtFAKHl4gwWAMwrPoNBReMRCDFCdUc3dc+/W++Edw03jbuLKF6+kzl8H6G5hW7q2sLt3N1XeqiM+74Gomsq33/n2oCIVHuwoyYEAIFVRmLqpnta8cazQAAFWby1j/rQtPN9SRuWU6wGY1rL0iEfFZoeTh2KjuMX3CqEO/UXmwDXnVGYu5rW6eUhu5SQ6WyYNG7Nu3h3EsnvgSEHRkPqGF+KCKjdnfKaqX/iW9gZYG4oQ31/WcWM8TneOgf9ekkUuIs64ykV7IoypGfj/rSu10u4ycM7KXlSgdkYGZet7OE+Fbq/MtlkZVK/poSfTyL/ne3EnNBwpjbAAL8hJ2hJhSMACj50/jiki33x4G0o1miK0ug01kCC0onXQvkMFmcmZFuzzChAMIr4Xakm2R3CcUURoZSvGQgfea8f0j4a1lIp/8T4im7tQgwkskzJJtoVxX1xx1CY4Jx1lCwZ/VuIw7UaoPEf/vOFBPF27mfv2Ktqv/D6++Ht4uvp0w5A/TwNrpu53fdFvjr2UZpqPnBMaTf373/+eOXPmkJeXR0tLC9/+9rcBWLFixZC2l19+OYlEgldffXVEMf7Sl77Eiy++yAMPPEBGRgZ33HEHvb29rF+/Hkka+Q3xVIqm1lIqweUtBBbvY9eoPpY3bUCSJBRFn6IVBIGc7Gw+M+8K9q7cwZvB9RTl5ZGrOPghv6ZP8x3V9R6/6HFybblkWj6Y6cDu3t18+sVP97t1AfxiwS+4uPziYz5nUkny4/d+xZ4GL7JzKw2+9Vy/vIJYYLDvtiCIrJl4A6sCuhFIXkaE6vJmGtpyqG12UWBKcm3zf4mHjsyv2+xwEgsOtNXMVuKTZmBoqkdq1ZcAJFlmZs4sdkvziASPPbgqr9LFJbdPxmAa/HN81tpd+JMKOSYDUUWlPhonqmq4JJF8sxFN03Aicl63wmXv9rB1rJPNxWY+s7iTpnFuCrb7BuUx7qmw89wkBykBngkNfUkTgTtLc/hKhhcCCRLNQdSogm1aDpJTv16yLUy8zk+iKUh0S9dRT6G7Li4ntqcPLZYi48Zx+pqypuF/qY7I1m4yrhuDsdhJaGUrwbeaUEMDL17msRkowQSO+flYJx1/d7CTDiUFtW/CS9+CQDPM+Sqs/LO+L6saunaCaIDTvg3zvwnykVnlphmZD0svPtTUphdeeIHLL7+ceDyOwTAQiXnffffxn//8hx/96EecddZZhxVjv99PVlYWDz/8MFdffTUAra2tFBUV8corr3DeeeeN2I9TRYwTLSH6nq0h2Rwi4lR4UnuPZDLJlHGTaOtsJxKPEggEqC4exfyOCrZld1DR6sYc1r92feVJbjDdQYoU1fIodqYOv2b8merP8MVJX8RlOj4F5K968Sp29u7s/zwvfx7fnfldylzHnqrx+YfW8fqODnK8UcTC33Hr9iloSYWkL0jUP7BeHZl2KSkkWlQrfkGiS1bZ1zVQ7edz3mbM6188pj5EZ5+Jac3biOrAiC+voJgpr7yFhsDmK++nt3t4QVaNIo2X5FL0WgdSaLBjlifXyqLvTMNkHRylvDcSY/7qXYxEhkGiwmKiWBGZ1RZn7ro+NAF6yh0U7Bp4magrsXLjWJmoOvhX3y6JTJaN5CgC87qSnLbOBwe1QRIwlbtQ/HFSndER+3QkGEudZN48HjWaItkaIrSitX+K21ThIl47NA7BPi8fx5nFSLYji+j+2JCMQu1SCHdDx3YQRJh2k14KMtSh7wu0wLVPQMncj7q3Hws+dqlNvb29PProo8ydO3eQEO/YsYOf/OQnrF69mrq6uhHPs379epLJZH/+LEB+fj7jx49nxYoVw4pxPB4nvj/YBvSHeyoQXttOV7yPtaX1NHW2oO7/8p8sVzCZAv4d0PNls1UXiUiM6lo3ojow/nHXGfhr1c+5VfwOO5M1jOT5MS1n2nETYtALVBwoxh2RDkqdpcd0rr2dIQo9Flp8ugB09FpYUHExT45awhUdkzFI4iAxdu94g2QsRnzGVcz1QGrfDkLuTFYo+awLWnmkL5+vj5tFePvqo+6LajQOEmJRkqjs1q8toFHR/Q69zBv22PZzs3E3x1AdhkFibLYbuPBLE4cIMYA/eWQlE3uSCj3JCGuAHTkm/Kdl0maTGNUZJx/9v789x8T/TDQTTQyMMgXgnk6J8buD2CMjXEvRiNf4jqg/R0piXwD/4np9TTk1WPwPFmJjmQvX+aUYix1HlHb3scNgGT6iOnuM/nciAu+mp6tPRU64A9d3v/tdbDYbGRkZNDY28vzzz/fvi8fjXHvttfz617+muPjICoa3t7djNBrxeAavE+Xk5AxynTqQX/ziF7hcrv4/RUWnhhF7vNZH0Jagob0JVVWRZZkMrxeHy0GnQ59azPRkULnXiZQSBwkxgJIlkV/npFQqGlGIAXpjQ9eiPwhXjLpi0Oe9vr00B5uP+jwbWndyyT3LWbevj8smD8QbbNo2ltFCMVLcQLBeP68rvxjjjAuwZObiKCwFVUEJ+UEQ0DYuYc6WB7nTsY0rPZ10mnMw2Y/uTVfNyEb2Dzwnk9XGfCw41mzo3+Z4+zEmeA99n1qWqd8OE8BgkrjoKxNx5wxfZH5539BpZKd0+F/dHdE4P5Vj/DMe5nuuFHddks3rc7zcMt1CbWKw0YYGFLfHhghxxCJy98XZfPPSLP59ThY15TY+aFJV8hBmHeGVbUOEeDgSjQGCSxuJbuoi+F4L0W3dqIfw1f5EYrTCWT869vrLaT4yjnqa+sc//jF33333YdusXbuW6dN1y8Pu7m56e3tpaGjg7rvvxuVy8dJLLyEIAt/61rdobW3liSeeAODtt99m4cKFh52mfuyxx7j55psHjXQBzjnnHCoqKrj//vuHHDPcyLioqOiknqZWI0laf76aoDNFryuGJEsYYgJZqhOxNU7YofC2cxcXtIxF1Ib/gmutCnGP8UE2JbcfkRifXng6P5v/s+M2OlY1lWteumbQ6LjYUczTlz6NWT6y9BiAF/e+zJ8Xx9jbakHVNA78iR1b2o3VGuWc2lZCuzaybMLNbA6ZQNPIc5q4zrIXU3sNgtFEoGbriNdSCkqQWhqG35edR3T8NLLWvIPL5cZtMJPV0oFj3fB51rFJC4nlj6HdPYHWNg1NhP9cn8ui5UEM9bqtiCgLXHL7ZAqrhg9C2h6KctH6PcQOmi7OMcp0JI6fCH1atvD1Jd2YEwNy+8cLsnlYHTwVfa7RzF2Lu1ElgYYiK/aIQmFLlP3xcoQtEk2FFjr3e3ALgKRq7Mg08LpJoSGRpNpkJEcT+fGSHiyxY5R3SQBl/zMRBUwVLmzTcjCPzfj4pkCl+Ug4aaepv/rVr3LNNdcctk1paWn/vzMzM8nMzGT06NFUV1dTVFTEqlWrmDNnDkuXLmXr1q089dRTwEDBgczMTH7wgx8MK/q5ubkkEgn6+voGjY47OzuZO3f4NRKTyYTJdGoFNHTev4WGohAl9TYcvTYEk4QWV3jftSll1Di/dcwQIY4VChijEj3eILeLdxFJRY9IiL1mL5dUXML27u3MLTg+a02iIHLjuBv53rvf6982JXvKUQkxQEyJkJ2/g93N04fs6/bbGOXp5jeJGXynqI8zLZ1sDhWBINAWTPBwLJ8bcxUS694Y8TpKSSVSw+AiCvFJM5G72hEiYfrmnkPmcw9RUjKKshcWj/hYzZvfwrz5LdyAeO2faW4TmN+t9QsxwOSzig8pxBFF5fPb9g0RYpMA5qNIzToSnkxFCZ2XwU9e7KK5wMKSsXYeUYeuCb+eiNF4vpd2RcGnKICMa5KLmKoxwWhkTypJQFGBg18UFNgfPL49nmAbcPE4FwvWH2MNX+WAZ6LqU+fxGh9yjhXZa8Z1UTmGzJPMhzpNmsNw1GL8vrgeC++L7fuj1KeffppodOAXfu3atdxyyy28++67VFRUDHuOadOmYTAYWLJkCVdddRUAbW1tbNu2jV/96lfH1K+TjVRvjFRnhFzzwJeJLsSgobGvPMwq31bOzp1KVqs+ClCyJaROhf9mvMY7qVVcJp/LbG0aS5PLj+iaVZ4qFhYtxCgdPoXlaJlfMH/Q56Q6vBfx4Ti/7Hz+vOle8jOrae0esNOcYItRHzCSUmQqM03s0WbxZKd70MtHZ1Lm151lfHb6FWRtfZmui6/F0tGM8Z3FQ65zsBADGDevQSmvwj91Ht6lesBXVmvHUZfcKFt5P82lX6Lw1Q5mXFTK9ndbcWVZmHbBoY0bNgbC1EbjQ7arGkTVDzphPJT3lASfuthDczIFh6lvtSsxOCXLr+h9WRcf2tf3yZYlLpXMnLslSEFLBFEF4eDgsONAqiNCqiNCbHcvnk+NwljmQs4wfzLXl9OcUpywAK41a9awZs0a5s+fj8fjoa6ujh/96EdUVFQwZ84cgCGC293dDUB1dXX/NHVLSwtnnXUWDz30EDNnzsTlcnHrrbdyxx13kJGRgdfr5dvf/jYTJkzg7LPPPlG386Gg+OPE6/10bm/GV6aRFbAiWjSUvjhJk0pzQYSAFGVtk27luM3VzEL0ZyiFAFFgslrN4+pz3Jd4iDmGoSPJQzE5e/JxF2LQXblybbm0h/X1/JWtK3mx9kUuqbjkiM/hMDoQgEj2L6iy3UF3n4ULZD9ZW19GXTCBtY5GVMNr7PBdBd3Df+lmR9vJKikjWLsT0e4Yts1waJ4MUhk5mPu6EAN95OQXYX/17SM+/n0M+7YxZpYP2e1k0llFTD6nGINRQjhM1aqd4eEFMdtkoCU+9KVmot2CLAp0J5J0xJPED6N12UaZzoOmuQOKun9UOxi7KBA6QuEUgHKjgQVJiYndKUImkYxQikk7/WyfJlPYHMGY0oiaRf55Zha3vNVNY7GN7mwzXl+SsVt9/efqybOQyLEQkwRaTTBrdQ/ykcWygQp9z9SAppddtE7OxjolCznbmhbmNCclJ0yMLRYLzzzzDHfddRfhcJi8vDzOP/98nnjiiaOaMk4mk+zevZtIZMCZ5/e//z2yLHPVVVf1m3488MADR5RjfDITqO3isXefoy/ooyp/DB3uKk5bUEDPA9tZU9TMzuaB1CRZlhmbPKBizv7gm5JwHux/vCuT64ZcI1fIpl3rHLJ9T9/IdXGPlaurruaPG/4IQF+8j7WtO8iX5zGtxHvE5xjtGc2mzk2Ul6xjkm0K1Q21BGdV8lfL86R6dVEZk/U27L1ywMnoAIw9DTS3NJA7byH7PFkkrriJrGceGPG6sbFTSNqdOJe8AMAoX/gYClHqjGp5lfzbf4E8TMT0waRUjb83dQ27z7T//ibaLSQ1DbMoElEUepIpUqkUc0gSkCR6NIHt6tC4qGlOK43RkUsp2kSBAhEurN9NW0YW3RYrSUEiLorUizKdqQHhzjHIXJaUOXdniNLG4UtxTFrdzeo5mRQ1RVhRaeXqNT6Wz8pgq13gU9tCiIrGpjmZ9ImAQWDiVh95m/RguTyTyPo5Wcxarj+TpCSwa5SdZq+Rc1f2IA33rrB/m+KLE3y7ieDbTciZFkyVbsyjPZhHexDkdBXZNCcHJ0yMJ0yYwNKlS4/qmDPOOGNIofrS0tIh28xmM/fccw/33HPPB+7nyUKspo9l21bR1afPDmxv3Mb8CUW6e5Eo4BZsyLJMKrVfeIpGkbPzgLVXswQxBVeTAccoO0FteLetcqmE7lQvLsFBjzawXncstY6PlFvH38qzNc/RGNQDo24cfyXPr+1iY6OP2xYMn4LRG05gM0mYZImOcAcbOjdgEA2UdRtwrFxKoMLLXxxvcGB4b0e4ls9lNPP33qHR8omMEpxmO7FeP6bcElxPPzBiv1VJJu7OwF63C0FN4cnKxvHmqiO+774z5uF5+z0QBPL/7xe4LrvsiI9d4w/TEBsqmLlGGUEQKDQZiCgqew+Yxl6oJfjeHV/CGI2giCKSqvLKnT/k3srxqIBbEik3G9kRieFLDT/NXSkLLOhuY9rq9yh7922sPd0YKytI7K0d1E4VBOrOPo/1Z1/I5NnTyWuOUPDS4VMTZRXmvdfNO/MzyVIFrGGF/JhGp6QhaGCNKWwwaszaE6agbfCsgDmuUlAX5M1ZXjJEkVQ8RW5HnLfKLOSNdTJ5u56u2JxvprD10FPsqe4oqe4o4VVtOM4swpBnw1zpQdxvrampGoIooCUVYrV+4jV9xPb6EGQR1wWlmCs9+veRysevjGOaj5SPibnrqY+xxMkZ7bPI17y8XL8Mg8FAtEvCeL4LY6mT6r0K+woyaOvuAMCaGhhdNVb7+Lbwc4qlAu5I3MolhnN4LPEsAHfNuYsCewH3b76fDZ0baNSaMWMiKsZBgZvG3URHuIOmYNMJuzdBEDjH+yPeFn6LhIEfvfdTbh31C+5+YSdjcp3Mq8wYMnW4uq6HH72wncosO/97+XjOL76UN5tf5WFtMcwa5vlpMp/dM4Wk3ItIAepBWXvGRIhA7XZEWSYrw3PIMoqqwwXhIIKqoXoy2F42jnlv6L7BE3ojCCMkHygOO8FJ4zH2+TF36C9WtnnzjkqIAf7TPnyaWXsixTibTJbRSPf+aWZZgM+1N3DjhpXElBQaIO1fU77w1z/lwgOOrzn3AlJGI/mbN/HSF25HVhRskRCe3h7G7tyGZ/my/raC0YhmMFD23/+yZ/4CRJsVpUu/J0mWqVyymAm9XRSfO587kk2suySDCyIic+sjvDraRlSEHkkjJGhkqSIBUaMyASmjRE4gxRsz3KzIkUkAZ6Q0srsSXPFOzyGfSUFrjLhRomLfQADcV1uiPHheNqPqwuyqtLMl38TNw4hxS76ZgoO2B99qAk3/3TMW2NE0jeiWbqyTsojt6SPVPRDPItoNvB+MoMUU2n+3Hu/VozFXnuJWnGlOGj5UB66ThZPZgSu8o5tHlj6F1eZm1uR5jJ5SRLw5yPLFb/Nu8/r+dtOLJjC5RrcBXDppKxoa7XTyqb6zMGgyl9q+wJiMMTx5yZNomsbSxqV84+1vAHB5xeWUukp5as9TvHzFy4iCyL2b7uUrk79ywu4rGEvyzafeoUb+KU5jBlvX3ALApNHtlOWFuKDsAk6vqEBRNaxGiT+8UcMf3xyYlh8/4x80hIYGWL3PF3vOhkgOG+USEpqIU0zxUp+7f/8Ue5RztBoM4R5ks4XeXZtgmB/93ouvxbnhPVIFJRh3bCRVMRbjljUUFJUy6aU3D3uPGhCZNB7VZMSyqwY5EETOyaH43//GVH50rmPbQ1EuWLeHxAi/nk5J5JfPP8aYl5+n7NlnCLz2Gj33/3XE8xvLy0nU1SG6XKh+P8aSEoyjKvFcfQ3m6jEEXn4ZQ2EhaiQCokjrHd8m9+67sc2aSfvPf05k7Tq8n/0sGbfeQnTzZvZ853v86me/5x3BOKIrZqXVRJZBpi2RZN/+6XIRyDPI/GxviurdQXZWOehwGcj2J9EEWFpqRhUEvvZa55B1Yw341qV6MYnLuxQsYYWwx4QzksImCPTK8EimQIEiUpgABzB1b5jS+jCHxShCQtU1WATL2Eys03NQ/HFCy1tIdUZxnFGE89ySQWv/73+lptemPx6ctKlNaU4s1jEZXNN9EU9tX0xPrBkowpBtpbo9C7lwJm81rwEg9H7aiVniceU5OpVuEiR5xPoMn/N8lj8kfsJD8nOA/qUwLnMcpc5SihxFfH3a18m0ZHLrhFv7r3vzuJtP6H05zAaumz6B379xF+fOaqBxRxx/yITN5qMzIPD1x3ZSmdXBtpYAT31pDitquwcfL+cBQ8V4DCVMiZaQ2tjAS5WnURMaPgjNLKpEN7/H+2OdvMoq2vbu7t8fnzwL1WTB1roPzZOJee27JCbORK7fDYJAiX+EL27072zb5m0AuK64Ai2VJOd//gfZc/Sjp1FWE58vyuLPjUPX9w/k+yveZMzLz+O44HyMZWV4rr6anr/9HUaItvZcfx0dP/s5aBrlL72IIS+PREsLvQ88SPef/4ycn4f63nsU/Pa3dP3pHgSLBfvCMxAtForuvx//s88RWrYMyenEPH48loCfu758I+2TpvDMZz/PizYPsUO8SOyNxNnLwPS6WRSIqRotyRQ3lYCtzEVYVYEkuPc3UvVR7WNnO3BIIkWyzFkRkUUre7GHFSZGYWxnAmdEoS7HxEXvDH5uVR4DsqLhCqQwljhYk29B6EyghfcHwplEZLsRTQPRJCEYRRJNQYwlDhAFEo1BYnt9RLcO/rkMvt1EdGsXlglZCCaJ+N4+Ek1BBJOMqdSJ5DDC/inutDinORzpkfFJNjJ+n1QoDkYJ2ai/LwWXNbNp11bebNXtG/MyczivfRyCR2Z3dhN3qD/tP7bQXshV4iWoTpFbz/oioBtwCAgf6ReCpmn8/d06koqG1dbCiraVbAw+RX7sy2zZm9Pf7rpZxdy+sJKXtrTxs1d0w5BZE+qp0x4kpaZIafr0bLYpi8tfyySxP7jPOm42v49OIqENDcr5hqsGZdNArnFGUQk9TfoadnTm6ZjqdiN2txOfNBPDtg0kps5F7mpD3lfDtLxSchYfflT8Ps4LL8R7881YJoxH07Rjet49iRTj3ts2Yrtbetu44f99G8nrpfzFF/pFv+XO7xB+913k7GwMhYU4zjoT0WZDcrtRYzH8zz9P3o9/THTzZgDsp51Gsq2N4NKldPzvTwddw3HeeeT93y9AVWn7n+8T2biB4n/8A3PV4OpbHb/4BZFNm4ht1iP9o8UlbLrwMrZVjGaxK4tFHY1k+HpBg3HL32b37Hl0Z2TRZ3dwxtLX+NtlV7NR0Z+VURD4fGsdMaORmNHIOauXs3TWAvY4PXRIBjpUjfD+6G6zKDDTYKJZU8gRRFwGmQv3xdjnknnbDj/cGKa4aXC+9L8uyOa8jQEkTcOuCTgCSbSYPtzeXuWgyyljSaqM3x3CFlX0YfsxZpIZ8mx4rxuDIWt4d7U0Jz8fy0IRJwunghgfTNvfN/Fqah2NHbrNot1mp8xTyMRQAa/lrCBAiMcTz/W3n5o1lU85LuTyBVd/RD0+PJFYgrWtO+lN1bGzp46dnW007ZvGvjb9/+Pz2R1Uy34yzv8Mv1uyhwy7wC+vGs3Onp2saF3BRXnnsvHeB+isr0WUZDIrq/hxYj7KcA6vmsZ3fP8h6htsMOEuKqG1eBSWdcsR4jFUm534uGkYW/ahSRJyYx1VpZVUPP/aEd+X6HBQ+eYbSEf4c9WdSJHUVPJMAyP6t3oCXLvl0MFQAnBzbxtfa9iF59JLSHX3YJs9a/+taoTeeQfr9Bn4n3mG8KpVJJuaSDQ2Yj/jDAr/+Ich5wstW0bzV76Klhw+B9xzww1E1q8jvkN/MTJVV5P7/f/BMn36oJeN7vv/Su9DD6H4/WTccgs9f/87osuF3+7g33f+P541OfnlqjeZ8eA/hg0X7BlVRc38MxBVhcn/fRRjNIqclUXm124HRcH/4ktE168nYbHy95/9jqcsIzvFXSNZ+Ny7vbgOqKT17GkZvOoWGIfMnKYYjrBCr13CoGiUN0XI7E2iCPD2TC9jG8LktQ/NnzZXe7HNyEW0GUDT0OIKyc4osZ09xBsC/aYklgmZuC+rQLIb0ZIqKV8M2WNOR3GfQqTF+ARyKomxllSpe3EzyzrW09Ax1O94UuFYqmM5dDj7+Kr2/wDIseZgFI38/dy/U+AoGHLMyUg0FeWnK37JW2vG0tpt4/aZXk43dTL9oqGBT0oqxYu//z9q1+mRzfOv+SwBRx5feMMHMCR4C+AHLCVQPzAtLUoSwtmXklzyfH/RByW/GNVsRUjEkZv1wu6nY8a2efsR3YMGCBYLFc8+g/EAF7rD8XhbD5/O8SLvX3PsSiR5ry/EF3cMb8k5XVT5ysq3mDexGueFFw7aF9uxg46f/4LIunVILhfKAYUz5Kwsiv7+N8xjxgw6pu/xx2m/+yeH7aNos6GGh5mml2Ukux3zuHFkfuXLWKdOJdHQQM8DDxB87XWU3l7c116D/6mnMZaVsXfuAv47dQ7bLA4KlAR3f/lGAqXl9JaWU7H09UNeX87LI/MLXyDZ3ta/Hq4BP/vLA7wpjJwmKQFTTCbODsC4lhhjakLsGu3gO6NlulIpLpQtfHG1j+yuwdHrGrBqips5G31DzikYJTJuHIu5wj1kX3htO/5X60EQMJY4iO3oxVBgx3lWMdFt3ZhHe7BOzu6P3E5zcpNeM04DgBJN8mztm4TCIYqyCxibW0mPEGTdZr0wwebmHfRk+zi9fQxP2//CT1z3si/VzLmV554yQgxgkS18Y+p3sMl/Z09PM8W7rGxuaqV9724u+tqdRPw+lj3yL9pqa1BTSUonTSOjqIRUIk6kaj6nV2YxcddqMkLNTFab+W+ikqbYAdXBvJMp3C/GBrMFd24e+6JRLMLAHKRmtiKoSr8QA0SzMjHm5WJoG74ICUC8pIhoSRFNLivj97UhOhyE3nsP+7zhKzcdyLV5GYM+f39PCy92+YZt+83GPdywbyd5P/whwkE59ameHhpuvAk1qMeJawetGZc8/hjGwsJB25KdnXT9aeT0wGGFGCCVQvH5CK9ahWlMFT1/+zsFf/ojido6lGAQxzlnE1zyBrbTTyP83gomoVD0tduIOZ3sPv9i9n3/R/y+pIp9qsAPS8rozcyipGYX4557avBl2trwPfXUoJG7APQbYh/E7Vl2KrwevrFbzxBQ0N3B1pmAcoGKMV6u8Qv8Y02Ih6a7eC4V443pFn7VbmX2AcLbUGxhdMN+D3G7RKr9DSxjq3BecB5yplUfFQ+DbUYu1inZdD+8g9gOPSo+2RKi56EdiA4jsZo+Am82ooaTWCdnYx6XganMlRbmTzhpMT7Jadyzj1A4xJiCSuZGqpF2JHE6RA6082jubOVxsZ0rhQXcoX4OvzWGsVamq7qLLHvWR9b3o8VrtTAn42qS4T/hi/sIdLTh62hDVVJ01NUS7O7Clp3FOTd/kfKpM/jrOzXcMreMlCbQGY7z+dMr+PIjPizevEFCDODcb4xsdbkxWSy0J1KYt64lPut0DK2NCKEAisuDaeNKUhVjEOv3IKoq2xMhMqZPoLirEOeqdYSmTqK9KJesLh8xp41Og0hTYz34OyAgIJSWId7xLSwpFdvcuUe1Zrw9FOWKHPchxTjLYiLvRz8ack4tkaDj579ADQYRDAYK/vB75Jxc9l15JQCe664dIsSpri6abr0Npe/ovKENhYVk3HoLsT178D2uF3jxfuYz9D30MFoySfuP7qLw3j+DotB8+9ewzZxJdNs2DHm5xGr06HhzIMCk/z6GfeFCHu9qZXNWPo9NncXbRitKxXh+Y7GydewEPH4fE95dSsHqlcS2DV1D32iwwDCOYdu6+sjVDr3IW5tI8jMLiFOMLJA1ftco8ItCka9lp/j6WZlc92Y3GtCSaWJWexzR2oj/yd9imzGNzM/9D4JhZNMWQRbxXlVFZFMnkbUdJDvCoIEa1H8O1aD+YhFa0UpoRSuS14yp3IX74nJEc/pr+ZNIepr6JJ+mbtpex7ptGxnXkk1TwkwiqTLaI/Jw98tD2oqi2F/z2GKxcNa42Uy9aAGicGqtT4V9fSx79N/sWf0eeRWj0Rwmaj0aL4mLmW2dzJdP/w1PrGniH8vrueuSsdw4p5QHV+5jW4ufpze0AJBrTJJjTLE5ZOlfMzaZzSSiUfz5JUiNtcSmzMG6fAnh087Hsm45SoluLRrPKUBMJbEuX9LfJ5vLjdFooq9Lz/M2mi0kYkMLKQDMyC4i6413qFq3FtFmG7bN++wOxyizGImkFB5q6+WPDR2EDxKYIrOR8SE/v1eDuM87d9A+TdNov/tufE/8B4Ds734Xz3XXUr9oEYm9tWR8/vNkf+ubg44JLFlC+4/vRuk5dE4vsox9wQKc55+H6HQSXrkSY0EBrkWLkOx21Hic0JtvomkayaZmotu2kqirJ1FXh2C1UvbkfxEsFkJvLqX7/vtxXnwR/qeeHjLKdpx7Lta5c+n48Y9Jmky0zJyD+eJLWINElyASNFnIiYa5rLmOeFERW/oCWDTY7s3iLW8OTYcwLzkaJEAShP40sh8kTOT5UkytCyHtfY7Iey8gmEwU3nsv9vkjz3YMh5ZUiO7qI7q9m3idH1Kqbs0pi8Tr/aBo2OblE6/pw31xBaZKd3qkfJKQnqZOA0DRuHKKxpWz6qkaat9uIZlSUYvi5JJD+34DkPdRD5iajEaj7OrYh8dXSIVn+KIbJys2t4fTb7gVi8PJ3h3rWV45Bn/CSpAIVbVWavLr+c/aNgD+79VdWI0S10/L5XO7uxBRmWSPoyGwKaQX2hhtS2BTXfg7O0gkkgjxOGI4hJDSI2itq98mPOdMYu5MvO+8gn3nZvouvoYD41/Dfh8HysihhBjAbzWRm5mBYB65OlWVzUxKVXmlO8AfGjqIDDPS+1xhJje6izE57IO2a8kk7T/5Cb4n9Wld54UX4P3M9bTc+R2U7h6KH3wQ68wZ/e2jmzfTdc+fCS8/dPEQy6RJOC+6COfFFyF7B+xKHQsXDmonmkxD1qwBolu3Etu1i/a7foyxvJzs730X96IrECwWsm6/nZavf4Pwe+/1tw++/jr2hWcgeb3Q20vpu2/DyuXcdONnkbOz6f3nv0h1dmIsK6P0yf/imTkL7003kV9eylZNISBJ/YUqRsIqCkSG8dhWAGW/EBeaDEQRKQrGiLzzK6R9u/T7tduxzZ1zRNcZDsEgYZ2QiXXC0CI7iZYQaBqp3hhaNEXvE7vwXl897Hp0mo8vaTE+RRCMEgoaJaVGTJrKREsF3XJPvz3mwRgMBvLxYpBGnlI7GbE6XcRLnaw0FfH2xkrmzllMiS+HVG0HBTPa+NN1U7j1gbXcfek4LpqYzyvvPER1YRVV3S1sTmawOjhQ8Wq2uY9EZ4RELEpi6hwMm/T0MEFJotrsJMZOwVS3C0sqhbjfjlSOjJxXfCiCqSSR8hJ8//0vnmuvHbbNGl+I5ngSkyjwq/p2dh9QFGK608oXi7JZ2htgjtvOp3OHengnGhro/P0fCC7Wq095PnsDOf/zPwiCgHvRFbgXLcI2a2Z/ey2ZpOXO75BsbBy2P9l33onjvPMwFn6wOAPLhAlYJkzAvWgRoaVLCS1ZgiE/H8v06Uh2O0X330fdJZeS2Lev/xjff/5L9h3fovN3v9dH66kUvf/8F1JmJtl3fAv/088QWbcOpbcXc3U1vf/6F7OnTeX+B/9KcN06mn76f7xkdfGy2XXI3GaACQ4rwZTCjmEKcOQZ9d+TLIOMpWEH5kf/jNTWqu80GMj/5S8RjnPZyvcxFugvWcZCB9aJ+rJSrNZHeG07lgmZ6WnrTwjp/+VTgHgkSd2mTnJKnCAK7F6dwJEpcW7ueficXXTE/dS27B50TDKZJJwNxc7ij6jXHxxTzhlsXuYh1+ujKbqZz26rJhBoob12D2MmL+CbZ4/mmpnFaKqKf3stBkJsUnJwS0kkVBREznCFqI7upTkYJDVuKoZNq/ujp0OFZbhCAUxr3yU+63Tk1e/0XztlsRKZf86gqeojpa25gXh2Lollb1G0ezeG0VXYp0zGXF1NQzTO0t4gv65vo8BkZGto8Ah7mtPKoxPLcRlkLs52D3v+8Oo1NN12W39Ak+hykfXVr/avJdsXLBhyTO9DDw8rxILZTMYtN+O9+abjKjaCKOIYpoqaYDBgW7BgkBhHN23C+9kbcJx5Jr4nn8RQUozS1Y3S3U3gpZeRsvTRpNLXh5ydDdu30/bD/0fZC8/je/wJHC8+wwSXm7YrPssK5dBTu6v9YbKNMhUWE6l+lyxIKBopNPJMBn5VVcT4KRVwzeXUnn0OSl8feT/932Oenj4WNE0jsqGTyKZOfC/VITmNuC/dP3UtCKixFGokhew9urrgaU5u0mJ8kqNpGiuercVgkvHm23SrvRofwW6Ntd1BZIuRSWPLCGX6sBrd9ITaCQT8TJkyhYsvvvij7v4H4oyqbJ7+0ixufOMyxkYKCTbrU9MtO7dztsfE7WeNIhmLsezxB4jubSVVUsDuiJnOpP5jbTcnmaXU0ScZiU+Zg3nlWwgHmDVmPvtQ/7/NBwixKEkULHuVrslz0EQZQR1+9uFw9Ha2syUji/pQN7HVrZStXoHlf+7i9x1+3u0LkdQ0epNRvAYJtywz02VjUY6HWW4bxsOIYuDVV2n51h2DrDzdixYdMq9ZCYXo/vO99D7wwJB9ptGjKfzLvUOCu040lvHjCGRlonR1YxozhlR7O63f/R6F9/0F742fxVRZiRIKEdu2jdDy9+j9xz9AljFVV/dHi6v792d97XYi69fT9q8HaBYkhnPnKLeYqNtfUKMzkaKTwf+fc9w2bi/OYaHXMSg4znvjZ3FecskxOah9EARBwPvp0TjPKib0XguCWSbREMBU7iYVjNHzyE6M+XaMRQ69ClXZyPnWaU5+0gFcJ3kAVzyc5JnfbqC3NUxuhYuo3EWsXaYqy0OWRWJNfRCT20hxpoUdjZ30uDcwZswYLrnkko+N/d5vV/8a67+3EDkg8tedk4coy2iZVl4rrkWze1mz8or+8oll+X4ultvI7eqhSQHD7i2HvYZsNGFzOCi1OMlesxG5u4eWiy9kq9dF0OXFumIpYnKo+cORonoyWXnTHQQlI5/Jz2Cy04pREBhjO/LC976nn6btBz8ctM1QWEjJo49gyMkZ0j66eTPNX/s6qY6OIftspy2g4Fe/QtpfN/zDRg2H8T3zLJEN6yn4zW/offAh5KxMXJcMrnPd9/jjiDYbkfUbyLv7x3T83y+xzpyBbd48xANKse4ORjh93dAyoLlGA9fkeXmt2z+oPrRDErkq18tnCzKpsp0aI0wlmKDjTxtRgwmMpU6SLSGc55TgOO3DfZn6pJE2/TiBnApi3LynF8UQYs9bAeKRFA3b9HxFg1XDNKYTTVMwxryMsnjYuivJxHOKceeYaejZwbgJY8nNzf2I7+D4oWkaD3/3a3Q11A/Z13ZeFvvkWZidNcQCo1i3owijQeHq0RvJWb6XztMvwvn8I4ctEOnNzmXa1r0Y2oeKVsrjxjd6NG9fegVqdztSLIJ57bsIyZHrAR+IKzuHdTffyf9NqMRtOLoJqWRHB70PPkTvww/DAbm27quuIvvObyM5HMMeF1r+Hi3f+AZqaKCcpmAwkPfT/z3qKlInO5qmMWPVDppjg13EisxGmmIJLsh0sSkYId9k4Lq8DC7PcWM7xeqfq/EUPQ/vJL7Xh5xhRs6x4TqvBEPO4SP203ww0mJ8AjnZxXj14t1se6Od3py1jCmfyJRQAaFwkHprF1E1Rm88RF+wm5KMsfgTnZhkA9k9lZz25alYncMXSjjVqVm9ghd+9/Mh20VJpulsF0ukDXjNmRQbzsCa6mDcK10EzriI4rZ9iAE/vo424uGhNZ5Hl1ZSvH4rHVMmUPTioW0vE4X5bB5fSWdvD7GpcxFSSTTJgGntMkTl8NPY866+gVmfumrQCDgRi9JWs5uSCZMPe2x023Yab70V9QA3LcnjIe9nP8Vx5pmHPRYg0dxM6G19Cl60WLBOn4axpGTE405F1vnD/KGhg1W+ECFFZbTVTFhRqLKZubEgkzluO0751BLgg1HjCsG3mlD8cbxXV418QJoPTFqMTyAnsxh3d3dz3333kZOZj9PiRUoYmNuRyfOu9XT2dg1qa7VayZcnIhgU4sYeMrI8XHLZRYjSqZVXfKS8dv+f2PbWgG2ibdooajN9LBbXUWAvhu6rKcraxtQaB8GONsTWpv414pyKUXTU1gw6n8FkIj+3gPaudmbFRewbNh/2+qok0Xzh2Wxr3Lv/s0zw7EsxBv2YV7yJAGgmM5rVhtin5/DaPF7O+dxXqJg2UIS5o74Wf0cbFqeLorETDnm96NZtNN5886CRrWX6NAp++zsMOdlH9tA+gWiaRkRRsUrix2ap5mBS3VHkTMvIDdN8YNJ5xp9QTCYTJpOJ1o4mWmmi0jaHPnecrt7BpdusVhs57iJMUTv+epVpl41m+ebXiIbj2Jwfz1/Scz7/Fdw5uaxpWc3Ljo208AYCAhPcpzG2cTze+jUEOr2EOhooMptQC4pIJBP0draTjA1NZ0nG4zQ01DGxqAL7S4f2Rn4fUVEofvE1bGeexjp/B6RSuF57BiUzh9jM00GUEJQkscxcnG+9BKJEuK+XN/55H2pKIR4JE/b7WP7EQ1z89e/gyc2nZu1KRs0YPn+1654/oYbD2ObORc7LxZCfT+bnP39EDlDHiqbq+a6SzYBoGfz1oISTxOv8A6UBT1IEQcB2io+ARyItxB8/0iPjk2xkDFBXV8dDDz2EyWSiMKOSUKKXju62QW3ysguRJRmjaMOVYWVs9ThsZgd5ZRmHOOvHh9+v+z2v1r9OPqdR2J5JXrCLQDKKoKk4muqYItuQkklaMz3UNQzUQLa5PaSSCeIHuEDl5BcxdfE7CEf5axCZMJb1GTaCfb1D9qVGjSWeW4R1zTsIcf0lwOxwoiSTJGNRiidM5tM//Cktu3eSN2o0oji8cPhffAn7gvknLMhKUzWi23uIbuok2RlBS6poCQU1ksJ9STmS14ycYUEJJkh1Rgi81YSpzIX36qq0O1SaTwzpaeoTyMkuxgDLly+ns7OTLVsOHwVcmTUNyawS14Jcf+PVGE7gqOmjRtM0Xtu8nN1r1mNqDxDpbiZWWIYYDGCq3UFVURnFbyxnz1nzqG+oHXJ8YfU4mncOVGCSZJkz+uKY6vYdU38Uh51dC+fQ0HDocofDcd3Pfkte5Ue73qeEk/Q8spNEvX/kxgcgOoyYypyYSpxYJmQhfUxjFNKkeZ/0NPUnnPnz59PX18eOHTsO6bJVkT8Wf7yZDKGAWbNmfGyF2BdJsHRLHcmlD9O+axexvGLCLg+y0UxeUy2VGHC1+knF9rHzzLk0DiPEGYVFg4QYYEJuMSmlnZGL8A2PFAzhUo9+hLhv84aPVIw1VaPvyT1HLcSgFzqIbukmuqUbJZDAdUHZCehhmjSfPNJifBLj8Xi45ZZbeOaZZ+ju7h6yvyPQhMVkRTQpZOcN9bz9OPDcsi10vPUUgVgETUmh5RdjDgWp0jQyWzowb99J11mnsWJUAeGAHxoHj1Lt3gxc2TmEDppOtrs9ONs66SzJp2zT1mPuX8befWAWBplwjIQ7+6NLO9NSKn1P1xDbNXR6/YgRwFjqxDT6wzXDSJPm40xajE9y8vPzue2223j00UdpamoatC8UChIKBTFZDFgsH6+ADk3TeOMf91K/bg3Rsioy2/YxxmjH3tyKafdeREXR043Onk97y75DnsdgMtOya8eQ7WMNNrZ6E0zdNHTf0WDZtYe8i86krbkB1WBCSMYPm9MsG01UzTvtA13zWFECCXoe30VXd5iuchuWmEJB69DAtpGwLyjEfWF6RJwmzfHk45kD8zHDbDYzY8aMQ+5vbm4mfKgC8KcoXQ31bHljMSlVJenyEE4kUSQJY2MzSoaXzvPO5J18N+0twxc+QBAorB5PqG/4MoHrfR0UWhyYGpqG3X80lER0A5DEpBmkxk09bNv8qupDBmydSJLdUTr/sol2XwRNgoRBxB46eptPgNiOHiJbu0ZumCZNmiMmPTI+RaiurkYQBA4Vbyc3xIn5ffhfqsN1SfkpX37NbHfgyMkh2NGBdcMKwpNmsmHFm1Cxf4q3veGQxxotVrJKy2jeObQgfX8bk5mC19855P4jRbFa6XTYqHJWsnv9eyTGT6P30usRU0lcS19CiEX624qSxJk3f+EDX/Oo+xiI03X/ZpRQkpfOyuKq5T2U14fZXqU7d8UMAqMbI2R1H5mrWKo7SmBJI4IsImWYMWanHaDSpPmgpMX4FMFgMFBdXc2OHQPTqkajkURC/wL997L/YrfZcdgsTH8qSNGiiZgrT901PWdmFuWfvoC6d5cT3LwXYQSXqwPJKimj5aBgrYMZZ/Mgxo/daxqg94z5WNs6GPOC7tyVsWAOK7auw7t1HUp+MU1X3krO9nWYNq4EYMr5l5BRUPSBrnksBN9pRgkl2Vrt4IqVvZjjejGFaVsHArhqS23UFlnJ7UlQ3BgZdspMA30KXgTUED3/fhTH6WMwXnTuh3AXadJ8vEmL8SlEa2vroM8F6gxCGXvp6ukgEAgQCAQACGdHuWSZB1OZG0E6dfNBz5q/CF9jE2qbn3gshma29o80NZOZ2OTZyKEA/lHjcG9ehVxfg2QwkohGDnvevIJisl5565j7pQGtF5/D5qY65nu9qOOqCRblU5caXA4xs34nmiSh5BRgjwSZveiaY77mMfVT04hu7Sa0opW95Taq94QwKMPPrFTsC1O+D5oLLKyb5CJuECnpiNGcpcea26MKGBMU1m7B9MojqL0dZH/vu7jSQpwmzXEhLcanEHl5efh8PgAKc0uRtShdw1Tkae5sZU1RDefUFWEedeqOjgVBoLikiu7WRqSuXtSsXKSmOlSbk/CchdjfeRUhmcDizUIWRXLKKolFQsMWlHgfm8vN+A07DhtkdTg0oOnS89i230xkeaRX/y1q2zekrXnLWsSgHzUnn6lf/x/MNvsxXvXoUCNJgstaiGzpQumN0VRgIbs7fkghfh8BKGqJUtQSJWIRsSahPBpC6dtFdN1rJBt26ecH3NdcTcZNN53we0mT5pNCWoxPIcaPH8/OnTsB6Optoyjj0Anom9t2MnfPxFNajAEMop47bW5vJGE0kyqvQrW7cLzxfH+bPC1FqruDDr/vsOcqK6mgpK552OpMR4JisVB77mns3bd3xLZS60BgWVlODrPGjz+ma76PGksR3+vDMv7wKWzxhgC9j+9C8cWJmkXqqxxU1IWwWCTEzDhqqA2lrxk1FkIQREBAS8ZQQz60VEJ/29BUZE0l3N6A6htIqTOWl5PYtw9jSQk53/veB7qfNGnSDCYtxqcQpaWl/f+OJ+K0+g8tCh6nm92+BmaFS5Fsp64ZyOQ5Z9MjhljmXoznrQ7Uut1D2qiCQCIaHeboAabml5L7wsj+04dClSTWzJtC3xEI8YHIRhNn3/aVYy5YoCUVwhs6Cb7dhH1+wWHbxuv9RLZ0YRmfiWCSCBdZmRsMEe55F6Wrhb7nnz/s8ZLbjeRyoQSDqKEQWiKBsaICzzXXoMaiWKdNo/HW2yh+8AFE86lRAzhNmlOFtBifQlgsFsrKymhoaEBVVSKRQ6+NdvV2s6TvPQqfzaDo+smnbPUaQRA4e/anCKgh7jX+nYuDU7DVR3E6vAhANBQk0t6CaeH5pF47tNiYQ4dfRx6JyKTxJJMJCotKSSgpOlubj+i4WZd/GnfOsZl8JLsi9Dy0AyWUJOO6MSPOcpjKXJjKXP2f9X9lYZ9xOwC5d/8YRJFkSwvd991H4IUXAcj40hfxP/MsBb/9Ddbp0wHQVBU1EEC02xFk/Wsi0diI+1OfQs78eBrMpEnzUZL2pj5JvamHo7e3l3vvvRdFUY74mEllY7n8hk+f8sb+iqpw94vf4VmfPrq9yLKArKcHpoKTU+cibVqFqKrDHm+22ZlsdOB9ezkA8dJiOieMwYdKUkmhqCpOk4WK5WuRe4Z3p1KcDsITxxHLzqQrlSAjqbKh9dDr086sHG763V8wGI/ecDPRGqL7n9uQnEYyPlONnHF8TV1SfX1033cfssdDxq23AiAY0z7TadIcTNqbOs0Q3G43drsdv//IPYXbwt2nvBADSKJERkYe+PTP2w1NXFpSSKBBH6GKjbXg8kLfUNtQgFg4xKpwiKzzTkOWJDraW1EbB3tY+0wm8kaVYw8GERNJAIIzp9GUl4FVMhBNJRm1bDVdp88mM6EQNxz+1+e06248aiFO9UQJrWgltKoN66Qs3JdXIhqPv0mI7PGQ+/3vH/fzpkmT5thIi/EphCiKZGRkHJUY9/b2oikqgnTqm63lZhbBfv3MNA0uFSnEY6TKqjAeQozfp6u95ZD7kvE4PSVF2EwmFNlAwzmnsWtfDUJDgMzcPMwGIzWnzaL+CNaNC4pKKbK5Rmz3PmokiX/xPsJr25EcRrxXV2GdmHXEx6dJk+bUJi3GpxjZ2dnU1enFEKxW62HXjQGmT5oGp+h68cFE47rl5/yM2Ux9RyZwgJWlGPSjcewrLoIoUlVcQenziwnNnMZmm0RgXw0AmqbS1XZoET8YUZIYs7OO2OYtWCdNGrF9vN5P7393owSTOM8qxn5a4QkZDadJk+bkJS3GpxgHBmK57F5isRjqIdZJR48ezXkXn3/KBm8dzOvNb1Cq5jJttRn/vsFrtWpmLqLfR3L0eAx7Dm2DeSg8mdnk76ih/rLz2LVvL3wAc67xpaMom3M6WvLwrmHJzgi+F2uJ1/gwlbvI+txEZG86SjlNmk8ip/7c5SeM2bNnU1FRAUBbZzOSJGE8ROBNMBj8MLt2wkipKR7a8C/m1Odx7jIP/j1Dg6ZiVeORG2oQjsHiUpJlFEVhY0m2LsQfAHdWNuXNXfQ98R8EkxElNLSAh6ZphFa00vGnDcRrfDjPLibztglpIU6T5hNMWoxPMRwOBzbbgDF/MpnE68okOzMXr2fwOmpbWxuvvfbah93F48rWt5bwzwfvJvLPd0i8u5vEQdPy9gw9zcbQ20V03tnUnHMFsenzj2rCWkml8Pd00dfV+YH6arJamevKpfyBf2ObN5fWO75NZM2aQW00RSP4TjO+F2pB1fBePwbn2SUfiyC7NGnSHDvpaepTDFEUueKKKwiFQv1rx+1dreRlF+I05NDL4JKBJSUlH0U3jwu9rS28fv8fB23TgMjpF5C02nGueYdQjy6ghp2bEYrLGfPem2AwEDr7MsLebDLXv4tcu+uE91U2GjmzajKlF15MoqEBUnr6WWDxqzjOXKj3XdHo/vc24nt9AHgWjcY6IQs1liKyvgPzGO+QFKZkeztaKoVoNhOvqyO6aTOOs8/GVJ6uJ5wmzceJtBifonzqU5/ioYceoqtLryvb1tmM2xXB68mkd39Esdfrpaqq6qPs5gdi8+svD9nWds0XyF3yLLaeTqzzFhJ5b2A0KzfqLyckEzjeeB47EDrrUigdjbGnA9Om1SeknyabnRmynbJLLkPOyqLu/AuQc3Wjj8ALL6L0+fBc/1Wi21USTfrSgeOMIqxTsgm+00RoTTveRaMQDCJqLIVolont3kPnr3+LmjRhyB+D6MxDkMxAPu2/uA/v9RfiOOOME3I/adKk+fBJm36cQqYfB1NTU8Ojjz6KLMt43ZnE4lGykuNIuNtoaq9n4cKFnH766R91N4+Zv335JoI9g1OVUhVjQNOQh7HF/CjIKKrElXsl5y200PvAgxjy81H8fiLr1oEkkmxoxH39XSjhAStLY4kT79VV9D21h1RfDOfZJcRr+ohs6dbvLduKllBQfHGGm2+XM+OE3vgTxuJcRJOJzK/ejrlqNKm+PiS3m9jmzUQ2bsJz9VWIVuuH+DTSpPn4kTb9SDMiBQUFyLJMKpXCKJsJhvyIzjiiIGGz2nC73R91F4+Z5l3byakYRbCnm1TZKMSeLsSA70OZcj5SrE43Vs94DJIR0W4n1ddHzg9/QOdvfot5/Hgiq1bhvu6Hg4QYQEsodPx+PVpSBUmg78k9g/anOg6frpbqNmGZ8V1Ei4hgTNHz8DsI8hIiK1/FkJOB0teHYLXge/JJvDfdiP30MzDkZB/3+0+TJs3xIy3GpzChUIjS0lL27t1LR08LyWSSsKuT3r5uYrEoo0eP/qi7eMwse/TftO3ZhSCIiD1dPHfjd7j8sT8g9nywIKvjSWbJmUjGScz2bKfrz+vI/tY3afvBDwkvX45pzFicn/ohqb6BN+muTCN+h4HK+gMirA9T1jBmFOjzGnH7klhig9PXtKSKknx/2xi0FFhPn4rau4pEy5s4TjsbLSoTq7MQb9wJUiOi1Yix2IEx34bkMmEsdCDI6RjONGlOBtJifIrT06MHbDkdbjRVpbWjiaLccpxKERbL8fUz/jBZcM1n+e9Pvk/huIU073iLs3et4dHrvsGZPc3kPflPxOSRpzCpngyU3EIMOzcft/7lVEwgHCpl/gVF2ExmJIed8Jq1RNatQ8otwTrvm6R6dKHt9RhoyzaT2ZuguGnwqLfPbaAjy0RCFvAEUghAzCgSskgYFQ2PP0Gvx0jUIqEBRc1RzInh88rVQArk6VhmTCfZA0GHjCGm7hfyKBAlUT/g3ia5TWR/aRKS6+i9s9OkSXN8SYvxKUx2djZf//rXefnll1m7di1ZGTkYjUaa2usYM9qEpmmnrOFHKql7QyfjPXjzy9CWPEdR1TTWZBTS+4W70DS4afFD/dPWSn4xYlc7QjIx5FxCKEisZBSR4goERcXU14XU04m832HraDDbnWSXnUVnSxmXfm0yRdVeYnsDdPzvT9BicczjZ2Oa+DlSPQoRi0hnlgk5pTFudxANaCi2kjCIKJKAIalii6YYUxMa8bqiVRfj5iwjqjWMs72eDMmLJmSh9OmR24JBRHJpxKxB9gkR8hQvoaSNmjIjzrBCSWOEA38aFF+crn9tw3NZBaZy91E/izRp0hw/0mL8MWDKlCmMHj2aJ598kkRCF6Nde3byxhtvcM4553zEvTs28kZVYXG6aN+7maLx56GqKU579I/sveIWKp/5J23nX4XicOk/wC4PebNP4+2MQirWL8O0YcWgc/nPuZyO/FKq/vGrgW3nLcIR9A+Z9i6eeBFqKkhvyzbQVOKREEoqhcXhIqt0Pr0dFXQ2y4yelklRtReAyIYNyJlZJJubiW1bhZRTStfk80lFREobB9dZLmiNIqW0I07wlzwS8R1PEl29GIADw0f69v9tqBiP88KLMGTbsc2Zg7GwgMKeHnr+9nfkVVvIW/BFQgGJ+lIrKUlEFSG3K4bblyLVEaHrb1uxTs3GNisPQ54tbcWZJs1HQDqa+hSOpj6Qvt4+fJ1R9jXVsrd+F719vZx33nlMnjz5o+7aMfPYD++krWYnzqxcLM5sOmq3oEH/6M53wacRUykETcX21ssIGgTPugRtv4GGZ8dGbLEwocxctJ1bABAlmYIx04glYuyuGouopHC/+iR5o6eRTE0n1Gcb1Ae7J4zZ5qe3LQdV0UXKYBK58FIHhWdNo/1nPydeswfJ4SC45I3+40zjZmEcdesx3bdgFJGcKlrKh//xu9Di0cO2N1VXU/b0UyRqawm8+irGsjIsEyciOp0Iskxk02bCK/cgZ88ktscHqkZ3hhGf04CsqBQ1RZH2fwsIBpG8H8xCNKff09OkgXQ0dZqjxOP14Pa4sXokps6YyHPPP8dLL71Efn4+2dmnZiTtuZ+/kzUvvkGoL4GmyUjyDpTUgN+z+9UnUW12xPDANK9zybMAKDkFaLkFBDbXIxzgrJVVWo0j5zL6dnQxqWEbEVnBMv5quprzMZgkxs7PIRlXCPbEyCp20Fbrp7tpQKDHzMllxpmZ2HI9ACTb2pAzsxAtZiSXC2V/Ra1URyPGUUd2n5JXBKWLZMsWYpveRuluQ7DYER3uEYUYQI2E6fnb3+n6wx8GNgoCplGjcF+5CM8NN+BYMH9/2ySxWh+O9giCAClJoHu6RFZzhGRnBOfCorQQpxlCMLid9vbnyctbhN1+6noXnMykR8Yfk5HxwQQCAe6//35EUeRLX/rSIAvNU4VkQuGVe7cQ8TcgSfXEohVEe58hdJgyiflVY+ncV4tsNBELBgbts7q8uPIvJZXMZ96iSvas6aC7OYhslPDm2cgssjP1vJL+dXZN01j5TC37tnWTiquIssDsyyuonKq/3KiKQvPnv0Bk7VrQNDRNg/0vC87Lb0djwpD+CSYRyQ4QQVPCxNa/RGzre0PauT79bQR7NWrfRiLrFpNqPjrP7Oxv34F1zhwMublILhdIEoIgoCkqydYwij+OscSJ5Bje1zxNmvdR1STr1i0iGNoOgN1ejc1agdlcgMmch8NejcHgxmBwYzTq9rSapiIIH49I/Q9LL9Ji/DEVYwCfz8crr7wCKYkx40cxderUj7pLR0TYH2fZE6vprn8BVTgdq72Lxi3PYHW6ySw7DU3VaNr64pDjDCYz3oJyRMmAIJqQDDYQPSjxZlp3r6Fo/EJE4+lc8MUJ2I4igrirMUhHvR+bx0zxOC/S/trQkc2bab3zOwiyTLK1FS0W6z/GffM/+wOr5IwYodfvQY2GULrbRryeYLHjXPRH1JDSv03O1NCSPaTadxF67aFhj5NySzBkFoAkgapgHjcBNZ5C8hQhZ5WhJswY823YZuYiZ1tP2eC+NB8e0WgjtXV/JBZrQQBUNU4guAMYWpHM45nHlMkPEgxtZ8+enxCLNlNa9lUKC64D9JfbRKILWXYQjTYSCGwlP//KD/eGjoH0NHWaD4zb7Wb69Ok4zB4sJol4YwBT8cn/8mFzmcgpLaBubStK8iHUafPx5pdizyhCSbTT1z2H7MrbSKUMmK0hRDGJ1V1MXkUhCCIWuwG7x0zTjl7a6vyEw5VMu3gBkaCRs2+ejNFydD/2WcUOsood/Z81TaP1nc0kt2/BMnky0Q3rBwmxdf5l/UIMkPJZMFZMJPz20yNeS7DYcV//a1LdyqDtqW4BQc4isfuRgbYOD9aZ52EsmYGa8uipTQeg7O9SqhcEk4xnURnGQsegNlpSAQQEw8djFJPm+BGNtrBy1dnY7eMIhXaiaXqGgyDIOB1TAIFAcBuapgeN9vW9x8ZNNxIMbiGV0m1fa2t/jcHgJcM7j/aOl9iz58domv5zajRmYXdMxOk4df0QjidpMf6Yc6oaf8RCCkoySTIWpc9qRWvdBwJY3KehpiQCPfpLRcRvwZVt4eKvzB5S+ahkfMYwZ/7gqKrG5p0iDduLKMvJJNfRhYmW/v1SRj6SrQXBko8ebqaiKPkYikaRbDpEOpUk47/8RpSK07HuiQ0bba2lNGxn34410oamxFETFaDpYjvcSKUfAQy5NtRICiWUINESIr6nj9iePhR/gpxvTE2Xb0wzBEkyIQgG4vE2ZNlOMqnH72taCn9gIwBu90xUNQFoBAJb8fs3YrNVAhqapiKKRnbsuBNVjZCVdX6/EOvnUdmz54eUl30Tj2f2J36mJj1N/TGepj6V6W0N8ua//kXT9jeRsvORJs/GFbdSYB1HVrGLWDjJhtcakI0Sl39zChkF9g+1f6G+GG8/tpuGrT3k5EiM+88XAXBe+S0QxiI5NSCMGulCDXahxUJImcWI9kK0pBVoJ/jyPRjyyjFPvwwtnkEAWD3FjSOcYuYm/+Euf0R0ZxiJG0UK2mKHbGOZmImpxIltZi6CIZ3SlGYw3d1L2b37LsyWEhojPlTBhCu+aVC+us1WhSRaAJWUEiYSqeNAU3VZdmO1liKKRhQlRjzWSiLZfcB+J1ZrBWOrf4XNVv6h3duRkl4zPoGkxfjkR9M0elvDvHjPe1idbrqbQxRVu7nk9mn9bVJJhfa6AIVVno+kj007ennhT5tAgPkt/yZnwfWkekYOlEtJAiaPhtK1CaQpoA78CvZ4DOwotzG6MYoiC0RNEua4clhBfR8NqC2zgQCiouEIp8jqHmqCMhyCQUTOtpJxQzWye/AoWVM0kp0Rkq0hUl1RlFAC0SjhOKMQyZl27/q409n5Gr19yxEMuWxte5su0xRUZMqDT2DUDnxpFBi2sskwmEx5mM2F+P3rAA1RNJOZeSbjxv4OUTSciNs4ZtJifAJJi/GpQTySpHNfkKKxXtrr/dSu72TuosqTZjpLUVT+fedy4pEU88Y5yGw5vGCmRKgrs6F2vkfBw38BwHPbX0l1D76fmFEgbDcgJ1VMcRVjQh122rrHa6DHY0KRBOKyQEoWKOyIkdtx5FahwyG5TUgOI4JFRoulSLaF9aIWByGYZUDDkG3FNjsP64TM9Oj6Y0Y02sLmLbdSUf5tMjPPorHx79TV/4GYZmaP47NIKAgoOJVm7Mk6nImdR3xut2smPv96QI+PkCQrubmLKC/7Gkaj9wTd0dGTDuBK84nHaJbx5OkjzdwyF5qiEQ+nMNtPjjdnSRLJLnEQa4+Q1ZM87JggYJfpyjRR7e/Bt1+IkQ2gScBgoTMnNMy9CXxumd2VNuwRFXNcwRpVCNlkRE1DEwTcfQlG1w610tSAveU2EvuDskxJlfK68BG7fim+uF6+cQS0mL7+l2gMkmgJYcy3Y8g98hS6ZEsLaiKBqazsiI9J8+ERDO1i376/YDLmkJm5EEEQKCn5PFlZ57B7z90Ye+8Z1L7LMp89Tt3opjz4GLJ2+Bz5SHQfbvc0kkkf4fAeFCVCS8uj+P1rGVv9WxyOMSfs3k5G0iPj9Mg4zQdg0+sNZK1tRwsOPx28c7QDY0IluzuGSxSIvPULkk01OC66DSlzLop/IKBFMElENZUN413M3eDr364BPrcBS1TBHB++SIRgkRCNIMgqqV5t0GxhUhJozzUTN4rIikZJY4TOLBPdXiOuUApTXEFOaYRsMiGrhCIJpCQBQdPQENAEEDUNSQVJhbBZJGYQMaZUrHEVY1Jj/MwCsicNNZfRc69V1LiCltJQAjHiNY1EN2/C9/h9OM48jfxf/t8xPfs0Hx2h0G42bb6VeHxoql5SsNFlPZ2kYKcw/BySNvJSiSAYMZlyMBozEEUDqVQIs7mI3JyLMRhycDiqMBgcI57nRJCepj6BpMU4zfEiFUnw5r1bKLfKmFIqnQbw2yQMKY2YRaLFKnDm6j6STgPSxn+SaK7BdcUPSXXvX2uVRSxjPDjPLUUwiuz751Y6zAIlTUNHFYYCO4ZsK4nmIIIkgNZLqnsTznPngJoktm07mPKI1x3acS1skWjPMZPhi+P26S8CHVkmTEml//PRINpk3JdUYMizEV7TTnh9J1pK0UszavtTpw56fxCdMqIxihpqIbj4r2R/43bk7CyCr71OsqUFx/nn47nuWgQxnW51MpNI9LJ121fw+9ejaYNT8XrNMxG1OO74sVdKEwQjVmsJsuzGbh9DZsbpZGYu/KDdPmrSYnwCSYtxmuNJa42PV+/bQiySQhDg/d8oSRSYMc1Lu0Nm4oZeDl7p9iwahXVyNonWEKmOCJZJmaCCGkvhf6lOP4fHjGiW0FIa5rHeQXniqd5epP3+0+8Tr6mh7+kXCC55Cy0Zx1hUhXnKIpSgEe0Qo+ohiAKyy4emxECUQVVAMqIEPBiLHEg2A0owAZKAaJRItoVRAkcWKHYwklci2fgG4TceH7Tdfe015N111zGdM82Hh6Zp+/OPRSKRWlavuZj3377q7ddTFH4OWQsf9hxHg91eTXnZN8jMPAtBEIjFWhEECZMp57hd42DSYnwCSYtxmuNNT2uIxX/dxqQsMxqgWmUyIkmEnhjRTAs1vXHGOw0Ibfu/mCQBOdOCIduKsdSJdXI2ku34rYX7nnqK0LvLMRYX0/P3v+M49yIEZxWi1Ysa7gJFQTDZEB2FKD4zWkoDAWRvmODiP5FqqR90PimrAOu8oeIYsMt0ZpuImEQMCmgCCBoYEyoCGqKql/ZQRQhZJFKSgCoKFHTGyGsfWJeWM5P4Hv8ftHAA29w5eG++BfPYanofehjPdddiyDlxX7Zpjh8trf/B79+IKBpJJcPsECdRrNUR6XwKbYQ15KMhO/sivJ65+P0b8Hrnk5t76XE798GkxfgEkhbjNCcCJakSXN+OfZSHeFOQ0DvNJNvCCGYJzWHk3c4oBZkWynuiIAqYKt1kfKb6hJYsVMNh2n/xC7yf+QxNX/giqY6OQftFhwfH5b9FMKjEdzxNdNWrQ84hmCy4b/gVqW4TGtCaZyZikRAAb18CT19y8Kj/wAwXURiUuvU+PV4DLTlmLHGVUXX6C4qcIeB74g4ybr2R2JatxPfuRXQ4KH30EUSr9Xg8jjQfAb5YH4v3vUU8WodfkTBpIXJi7+FIDjbAkWUHNmtlv6GIweAlM/MsUik/XV2vAzB69I8J+DfS3vE8ABZLCcVFt1JYeP0J639ajE8gaTFO82GgpVR6Ht5BbPf+ysO5VjoEkbxoEu+nR2MscnyotYMVv5/6q64i2dA4eIdsgFTykMd5bruHVLeJziwjCaNEdkcMo6oNWQtGBDkjQarXBIoGkoBgkBBEUCMD69F1JVbKGyIA+J0yAYeBopYoolMmvvnfxDa/C4DttAUU/O73SHYb0a1bMY8ff9KktaU5OjRNIxKppbHlSZpaHsJvnETENosYNjxaB4roxOqcyiUl82hueZCamp8yccJfyco6G4CWlieIRPeRk30hyaSPPTX/i8HgZsKE+zAaMhAEgUBgC+0dL+B2z6Cj42W83nnk5X4KUfxgxVDSqU1p0pziCLKI9+oq1IRKw2v7SHVHye2J4r1mDOYK94fal9Dy5XT87OcI0jC/8ocRYvOEeSS7Tewa7aC0MYwlpq8Ni1YJTQMtuj9H1C0R3/wwsvsS5AwrWlJAjWposdSQlK/kAT7YrkAK135P7fCb/9s/Pe66chGZn/scse3biW7ZTGTlKgrv+RPCKVh9LA0IgoDNVklZ8Y1kemdiNHhJpUKIopF4opMM72kYDC4A8vOupKtrCTV7f4bHMwtZdlBQcA0AmqbQ2vokpSVfxmIpoafnbTIzFmI0ZiBJVlpaHqOp6d8YDF4s5oKP8paPmvTIOD0yTvMhkOyM4N/rw+Qw4piQ+ZH0oeW73yW8YiWixUKyuRnUkQO6bGdezZ5pl1FeH8aY0r8qBFlAMOwjtvkNTNWzUXqaCb/9NJYZ5xBduwTHxZ9H9M5GDaaGNWTaW2ajsn5oUI/klkjuW0z47SeRMjJQAgFIpTDk51P4l3sxV6Xr6H5SaGn9D3v23M2smS9jtR46D11RIqhqEll2IggCihJD05KklDBmU+5x6Ut6ZJwmzccIQ7aVzOyPdt3Tec45iGYLcoaX3ocfwVRZSWznzkEVp97HOHYq5jFzEJyFVNSFMSgDqiq5oe8fPwMgvmM1AK6rvgOijNLTCqqCcBhnRFkZfofiUxDd5+C57Sz6/vEl/QSCSMoXpH7RpzGWFCO5XBhyc3FecjGOhR9+mkuaDwe3azoVFXceVohBd+2SpAM/mwEzsvzR5CR/ENIj4/TIOM0nmGRnJ7Ht2+n914PEmzuxjJ9HZN1iJFc29nNuI9U1tACH7A3R969vDdpmGjMd4/gvIBhE4pv/RnzHajy33Ueqe+ia+L5iK6WNkf7PHdkm2jONWGMq+W0xbFFlqM2xAKJNQjQraPF2wu8+hvOc+cg5uRhLSrBMnoTk0L+AtVQKBAFBSltznqpEoy0IgoDZnP9RdyUdwHUiSYtxmjQDaIkEia44ff/dQ6ojgueKTLr//CtMEz9Lqnvo5Jlkb8f3yI+GbDdWTMB2xtdQIyKhpXej9HbguuIbqPGKQe1UQASiZpEdoxzkdcfJb4vRlWlkX76FDH+SsobIkLzsQYgge0QQEkASNdCMaEkg2ByE33kR2/TJ5PzP9z7IY0mTBkiL8QklLcZp0gwl5Y+T6oogec10/30rWjyFGlGGtJMzBPr++blhzyFl5mE7/SoCz90LSgopuxDr3KHCvbfcRq9DZsZm/xDR9Ttk6oqtlLZE8fgOHVx2KCSnTGTZbyj62+8xFhcf9fFp0hxIWoxPIGkxTpPm8ATebCSwpGHYfZJTxvfQLYc93lBajf3MW9HwoPQOCHpbrokuj5Hyxgj28FCh70eApjILYlSjOJ5E7d0ImoroygchHzWqIphFtLiqO4uJ6NPamm63qQU2Ilq6ybtr6ItAmjRHw4elFyfU/PXSSy+luLgYs9lMXl4eN9xwA62trcO27enpobCwEEEQ8Pl8hz3vGWecgSAIg/5cc801J+AO0qT5ZGIa5T7kdi264rDHOhd9E9vCb5PqdaL0KiQlgS3VDraOcWCKq0zcGewXYtE2dF1XtErIXoGiuigFbTFdzE2TkTKnIIgygtCJaGwi8OTXCPznNuQslch7PyX81veJb/oD/oduIfDcPfgef5y+xx8fcv40aU5GTqgYL1y4kP/+97/s3r2bp59+mtraWq688sph2956661MnDjxiM/9uc99jra2tv4/f/3rX49Xt9Ok+URy4CSZ5DIhZZgH7bdOycZ7zWi8N1yCnDtM2ogg4rn1j2hKNUqfLrY9HgMbxjsZuyfIhF1BvH0HTDsLIBr7kDw+EjX/RHb3ImemEG1xUj2DJ+y0uEqqRyPl85LyeVFCBdjP+x2ua/+JphowloxB9fWQ2Ldj0HHtP/s50e3bP+CTSZPmxHNCU5u++c1v9v+7pKSE733ve1x++eUkk0kMhgEf3vvuuw+fz8ePfvQjXn11qB3fcFitVnKH+0JIkybNMaGGkvz/9u48zIrqTvj4t6ru3vf27X2jF8Aoq6iIgoJiIrsal2RcMuOMkUwmRnTUvJnExBH0nTySzRmXMU40gwu8kgUQYhIiKmAQQcRmR5Zmb7rpfbv7rTrvH1cbL90N3U03TcPv8zz9PHTVqVOnzj30756qOuc0Lj9AaHstKhzHluVu3ee8MA3/jYMxUuxUvvwy8crKpGNdl03Edck04rXupO1Hc12M3dzY5ly620CzV2AFmmj83c8AiGxfT/rMl4jXKBSwfagP47NhUDGbhmFBSshkQHmodaiVFTIhBLaCr+P/hzvQbLWE1v+eyM4NiRPF41Q89u8M/H8L0N3uNuUQ4mxxxsYZ19XVsWDBAq6++uqkQLxjxw6efPJJ1q9fz759+zqd34IFC5g/fz65ublMnz6d2bNn4/P1v7FlQpwtzOYooa3V1Ht06nI9eINxrMszyflKCVmpbrTPZs4KlW5qPUbPzMd/64+J1zgwG5LzswBbB/OKxI78EXvBkNZAjKaTfu8vWnvEn1zsZ+SnTThjyT3kiF3jSKGbsNMg6NTJrYtSWJ5YgMBqMYE0HEP+GfeV3wGtisCq14js3MmRWQ9Q+PxzEpDFWavXg/EPfvADnn/+eYLBIOPGjeOtt95q3ReJRLjrrrv4+c9/TnFxcaeD8d///d8zaNAg8vLy2LZtG48++iibN29mxYoV7aaPRCJEIsdXiGlqajq9ixLiHBM90kzD8v2sG+Yjtz7K4INBbNluHJZBeoandU7o+t/+jtjhw4mDDBv+W58gXtM2v7gBH49K49Idbf+v6T4bsb3HsPzZANgvGEXdrbMo17zY/ImVnoaUtbQJxADOmGLQweNjlMsLXKwdnUZ2Q6x1wQkAs9EEMnGNfhjvJAXEqF+8ibRbxvTo6lhC9JQuv009Z84cnnjiiZOm2bBhA2PGjAGgpqaGuro6Dh48yBNPPIHf7+ett95C0zQeeeQRjh49ysKFCwFYtWoVX/7yl6mvryctLa3TZdq4cSNjxoxh48aNjB49utNllrepxfnKbIqiLIUtzQlA/dK91H5yDKWBO2xhZLrIvf9SdE8icFmRCJWz59D45ptJ+aR/67+J13yWBjhS5CZq03FFTAqOhtt9KcWWqQNNhD5eguZKQQ3+OyIaeNsZRtVZdel2qrKcDDwYwBU9yZ+0z1bLShmTi3tEFpohC0+IkztrhzbV1NRQU9POV+EvGDhwIC6Xq832I0eOUFRUxNq1a7nqqqu49NJL2bp1a+u3bqUUlmVhGAY//vGPTxn0P6eUwul08vrrr3PHHXe02d9ez7ioqEiCsTjvKKXAUoR31uEY5MdIsROtCFD3xqfEq4JJaf03DcY3fgBmQwP7bvoq8erqNvkZucV4r59NWbYT3VIUHglhnOIvim7fQ+Mffolj8Ajc4x/Gaoqf/IAuqM2wE3Tb0ABLh4DbRsSuYTMTPeqU0PGAb2S48F0zgJQxea234PuaMk2Ofv/f8E2eROr06X1dHMFZPDd1VlYWWVndm+j+87j/eWBctGgRodDxBac3bNjAvffey9/+9jcuuOCCdvNoz/bt24nFYuTn57e73+l04nQ6u1VmIc4lKmwS3FKdCECGRuxYgJY15W0CMUBoWy3esblUzHmi3UAMYB47hFm7moHBCSefMeszRppBZMdmHIOG4br8X3s0EANk1sXIpO1EIWGHxv6BXuJ64la3aWgUVIYwl5bRvPIw3omFpIzJRXf27XT9KhYjXlVF+cOPoGIx/F/9ap+WR5w5vTbpx0cffcRHH33EhAkTSE9PZ9++fTz++ONUVFSwffv2doNje7epy8vLuf7663nttde48sorKSsrY8GCBcyYMYOsrCx27NjB9773PdxuNxs2bMDoxHy0MumHOF8p00IzjvcCa9/4lPCndahIezNtNdOy8n/RNB3XZZMx/MNBs1CxaiI7V6PZnTgGXYEZzGu7tvFJGH6DeMUqtJRrOlxM4kyoznIQ8NjwBuJk1UbRnAbeCQPwXTMA3dW3Qbnutdc49tRcBvzn06ROm9anZTnfnbU9485yu90sXryY2bNnEwgEyM/PZ9q0aSxcuLBLvdRYLMauXbsIBhPf3B0OB++++y7PPPMMLS0tFBUVccMNNzB79uxOBWIhzmf1S/bivCANTIVrdDbukZlYzVEi+9oOP4rX+nCN+lc0m4aKK+K1n0fcbGwFifkCzJbj6Y/lOAm6DdxhE29zvMNnwGajSWTXBlwjndjyxmI170FFQxiZFxKvbft4q7dk10TJJkpjqo3Nw33kV0dQ7x6iZU05vmsLSbkiDyP19Bam7y7/LbfgGDwYz2WX9cn5xZkn02FKz1icB0I7agl8VEl4Vx2ui9I5Go2jW4q0gy2kjMsntKUabGC1xLvUy1XA4SI3TSk20htjDKhouxwjALqGZtdQMQvN3ETT0hfaTeYaNQHHkLHovuFJ02ieLt1joHviKNPWOiHJiQ4VuXGFTXKqo4kNNh3f+AJSJ5eg2c7MM+VjP/85mq4T3PAxxa+9iu5IfBmoefFFMr/1LTSbrHp7pvX7nrEQ4uygTAtbtpvwp3V4ry0kbcYgap7/BO+RxFCgwLoKDH8NoXWLcF5yHyqaiMa16XaO5bgwTIVhKWxxRVZNpLXHe6jITdSuk18RpvhwqN1z2zI1zLotNC17Ec3lwTXsSkIb2h+CCBDesobwljUA6P5MUsbfDO6r4AtrIOvOMnRvLiruh89uhn0xcCcCrwlEUKEaIns+JPTR22Czg2Ej4Dh6mQAAGTBJREFU9YZvo/suwWxMfl5dfDjEkQIXW4f6uPjTZohbNK8+QrC0iqx7R2LPS+laxXdD+l3fILp/H1YgiO5wYDY3Y/h8pFx9NSoWk2B8DpOesfSMxTlMWYrmlYcJ764nXh0kZ9ZlxOvC1MzbBqZCT7URP/RnAqv+QPrM/6Q54CPoNgi7DRp9dobvak7K70Cxm5JDIXZd6CW3OnLSVZUMfw0Nr/7otK/BXnQh3qkPEa+xt10xymbHfcm1mPWVeK66DTNUTMtfHkaFWjrOEMDpJv0fnm0z7SYkbrcfznMxZsvxW/e2XA+5D41uHfnRW+L19RyZ9QCpN92IWVVNza9/zaBFi3ANuahXzys6Jj1jIcRp03SN1OuLSb2+GLM5iu61U/v6DjAVhr+ahgVzIB7DdDhZX5JJZo1OdnWEjPoYA2h7yzngtrF3cAqDDgTanZQDAB0MXy3hjW+1v7+LYof3UP/6/yHtrsdpXPJfSfvcV0zGceHX0dQRGl5/HN2feepADBAJgRYG2r6/klsVwRVKvpUdPxbErAtjy+ydGbzi9fU0LFxI9Qu/InXyJNzDhnFgzhNgt2MFOnE9ot+TYCzEOcAKxYmUNWAF49jzU1BKETvagmtIBrb0xEtRhs+BFTXxjM4h+Mk26n49G8w4zfkF1Hz7Z1xaGjzpGGHNrjPihJ4ygO41QNfQ7U2gTMJbl9N8klvR3RIJ0fDKo0mb3GMm4RxyJZotTmTPJgCsxtpOZ1n/8oOkf+tXxGuSnwenXJlH7oQBHHt6Y9L2WGWw14Jxy+rV1Lz0Mjn/+iDp//iPqGCQjJn3kn7XXTgKC3vlnOLsIsFYiH5OWYra13ccfyPa0ND0xMtSvq9E8Y7Lx0h1YoXjWME43gkDcOSFCKz8EpHduym87loK98ewTvHASnMZqFjiebLuNlDRLRjpFxLe+hah9ct7+SrbKY/TTfDDpUQPfNqpMc5tKYhsIPPub2IGooS312Kku/BeXYA9x0PaTYNpXHEIFYljpLtwlPTe3PfRvXtRoRDer1yfeGnL4SD3+9/vtfOJs48EYyH6uZa1R5OHJpmKOp+NZp+T4vcO0/zeYez5KcSOBTG8drwTC/Fckk/04EGKX32VlndWEKt6Hz19AlZHU1Lqn62Q9JnY0T8RXL341IUzbDguGInZUINZdeQ0rzSZCjYTO7gbIqFuD1f2TboW94hMALxXJk8a5B0/AM+YXFTMwvD27hCnzO/ch+710bDoDxKEz1MSjIXox+L1YRr/nFhgxSIxzChm13GHzNY3nB3FPrLuGUG8Nowt243ushGvq2Pggvk0Lf8rda++BoD/znzQB9FuF1kBcQvNZWB4wzS/eepArGfkknrrTzBrLdASb1YTr6XlvXnEDu3q1PWl3XUnriFDqJzTdmrcUOmq4+dKScEKHF8oQnN78X/tIaL7txD8YFmH+atYxy+gAYkZuc7A5H2GN4Ws7/wLyurCuDJxTpFgLEQ/Ftx4DKzE6kWmoTPY7UAPxIlVhEHXcA1JJ/Mfh6NpGg7P8dWKbBkZ2DIy0FxuXMOH0/TX5TQtewYjPQfv1B9j1lkYaQaaLU7s0BoCH76Fa8Q4QuuW05lps9Lu/r9Y4fxEICZxSLxGARm4x32flK9oaLYwoKNCR4nXHCT48Qqs2orWPNK/cReOkhLM5rbPqU/kv/mrtHzwAbGDhxKnCweJ7FqPa9SMkwbj4MaP8U4Yf8r8zxRNPzvmyBZnngxtkqFNoh87umwvlXtqsQydC4dn458yEDMQI1YZwFHoBUWnp3aMHjxIy5o1BD/aieabhgqtp/lPL3erXOkzX/7CjF2dY8uC+pe/fcp0RkYGKRPGk3bb16j65S8Jb9+O7/rryZx5L4dmfgvnyGuI7P4Ee1YqVjTaGqDbozmdeMZeSeEzz8hax6JdMrRJCHFK+TdeQOaBLAy/s/VNXyPFjnFBWpfzcpSUkFFSQuqUaprf+4DK2d0LxHpGLmZjN77jq869hqUiEZqW/REjPYO0r92GMfNeyh96GM3hoPBXL3DsP36C95qxFPzkJ6Bp7Lnuy5gdrDSnIhFSp8+QQCz6nNwTEaIf03QN5+C0Hh1yY8vOJu32m3GUlLQ9ny+dlOu+Tvq3niP11gfbPd6ePxAV71ow1twG8fIPOpX282fD9a++SmTPHmzZ2RQvmI//tlvR7Hbcl4+m+e0VhLZuBV2HDp7DGpmZFPx0Lmm33tKlsgrRG6RnLIRoQ0Wj+G9/gEjZEQJr/oDvhgfRDDdmsxsVsYjXgO724ZsxE2wONLsL3ZOO5swkXmM/9Qm+wPAcoenPL2A1nHyd9PaESjdhNjbR9NZbYBjkPf44mm7gGTOGeE0NR+6fhVlX1+Y4z9ix5M2ejXPwoC6fU4jeIM+M5ZmxEO1qWVdBsLSK6MGmXjuH5jIIvPs4ZnV5t/NIvflm3MOH4bp4FKA4/M/fRvO4MVL9GF4v4Z07UdFoa3rXJaMo/s1vMLzeHrgCca47U/FCblMLIdqVMjYP9/AMujmjRqfoTg3fjPvxf+MxUr/+CHp6TpfzaFq6lLSvfx33qIs5fN93sQIBPJeNJlpWRtrtt6OnHF/gwT3mckpeeUUCsTjryG1qIUQrsyVK7YKdiWk1czyEttW0jmQyNdg6LJWwQ8NhKobvasYVPb0ba4mVk7Jaf0+57j+wZSrqX/6XdtNrTie2rCxi5eXoHg8qHsczbizBjRuxFxVhLygg0thIpKwMzemk9qWXMOvr8V5/Pe6LLyZz5r1o9q7dRhfiTJBgLIRAmYrwzlrsBV50h0F0fxNmYyRpSHEgxcbQvYkAbAFHB7hpTrGR2nySdYy7XBCIN+j4bvoOtgyD+lf/O3l3JIIyTQb+diHOCy9EcziSlhUcuPANjjz4IK4hQ/FcPpqaX79ExnXXkfODf+v1FZeEOB0SjIUQaIaGe2QWkUNNqHji7WMVTp4aM7Xl+Pq/OlBYnpjha+eFXsh3tQnIUZtGZb6rw7WOOxRXYIzGyEnDNeoDwls3Y6SnY9bVkTpjOqHt2zEbG7GCQZoWLcaWk4Nj4EBcQy5Cdzop/p//SZQ/GsVxwZewZWdJIBZnPQnGQohWzuJUXBelE6sIYEUt3MMyiB5qwmyMdnjMsD0tVGU72Ds4hbihoTQNI25hMxXFR4JdOr+eYoC5F92TQazCwDlsKpE9uyj69a+JV1dR97/ziB08RPWzz6EZBqEtW9BTU/FcfjlFLyT3ojWHA0fhgG7VgxBnmgRjIUQS38QiHEWp2LLdaE4DACsYo2XtUUJbajAbIm2OyamOklPdccA+Fd1roDsaqJ/3fVCJnrlz6FAiu3fjGTMGW3oah2bOxGpMLIjhmzwZ/003Yvj9aG43oY0bT5a9EGc9CcZCiDacg/1Jv+sOg7QZg3GPzKLprwcSq0T1wKBII9VGrPxtmv/4BzDjSfsin35KyjXX4JsymcqnnmLQbxdSNm16onxfugB7QUFrWs8VV5x+YYToQxKMhRCd5hjgxQrEuhWI9VRbYq5sZxyzehNWoJHgju1Ed29KTuh0Y6RlYx8wGN1lo3HpUlQwxOHv3NeaJFZ+9PQuRIizjARjIUSnqahFyth8GpaWdSq9nmpDNX1Cy/u/x6qr4lRR3H/nD7HCg9G0bTQteZZ4fj6pM6ZT95v/RU/PwX/7v2E1VRGtHkDTqkN4r8xH98hQJdH/yQxcMgOXEJ0WLmug5qWtJ0+kgeY00F0QWPULYgd2dukcRk4hZtWRpG26Lx3v9J+josnzTNvzHMSOvotZXUbmvd/Ee82E1n3Ksmj6y1/w33BDl84vxBfJqk1CiLOOsyQV3WvHaom1n8DQiB9YSGjju90+x4mBGEBFw+12qmOVUQzfYDR3HqGdLTiKD7YucBGrqKDyiSeJHT5C1nfan0REiLOFTIcphOg0zabjuSS7w/26fd9pBeKOqEgIq2EVtswv/MnSEmsga+4cQCNel0rlT+ex/7avUfXMczT++SDuK2+gbv58Inv39niZhOhJ0jMWQnSNoaPZ9cTkIJ/3Vg0Ns3IZzR/8sddO27JiPjAf343/jFlfSXjnR6RcdRO23CFojqGY1R9gzx+KfcBIzEgBZoVJeNMqzJoamt95B1tensxJLc5a8sxYnhkL0SVKKWKVQeoX7cZZnEqgtArNUGjGMTRbNmgxlNkCyiR+dAct777RZthST/PNmIkVCRB497d4p/wDmq6DbhD4YBF5//7v1L3+Gt4J15D9wKxeLYc498gzYyHEWUnTNBz5KaTddAH2HA/2Ai+BDZVED2aR6CrbgLREWs81+G65FsOvg1VLePMywqVrerxMzX/+Teu/W95+HQDH4MEMXrYUW2YmzX/9K/GGBpRpohlGj59fiNMlwVgI0S3OklSUUjiKvDT86STTXpoKs84E0sif8xTNK/9GZNfHNL/zR4glXgTL/8lPcA4bSvOKFTT8/g9gmpj19acsg23AIOLl+9vdp3s8xI8dwwoEaV6xAgDfl7+Md8L4Ll+rEL1NgrEQovsUNP7lAJqunXIeEHteCs4LMwluGYGekU/hi9+m5Z1XUFE/tvwraXn/PZwXXsTA3/4O4lGCm7dgNgQI7ygndnAvRk4x9sJrUZaGVfcJVrgZe9EVBNfOR3eloLlTCG1+H9XSBCjC27Zx4I47sWVlnaJkQvQ9CcZCiG7TdI2MbwylacVBWj44ClbHITllbB6arpE6uYTgxmM0/uUwOfd9j/pFu4mWB9E0i1h5DZHDVWh2A0fBSNJuKYCv6bSsKSe4uZp4YwRbhg3co7FnO0AP47n6HqyIA6vZxDvpJmyZGmbdFqJ7NhLetpZ4dXVrGVS4iytICXGGSDAWQpwW3WGQdsNgHAO8tKyvRDM0jDQnwU+OwRfm6AiWVpEyLp/Q1prEhrii+uWtOAZ4yfi7i4CLkvINlzVQv3gvzi+lkTqphNTJJaAU6FrrkoihXXWENlcT3lMPJJZ8jNcq4GLsQ0ahYhEiuzai+/24hg4leqTtGGYhzgYSjIUQPcJzaQ6eS3OAxBvXusdO7GgLkQONEFdEDzXT9M4hIruPPws2PDYMvxMrHEd3Jf85cl2QhuFzcOy/PgFL4bu2EEhel9ie7aHxUDOaTQddS+6Zm4qUr3ybtDuPkjJ2LM7BgwisW9dr1y/E6ZBgLITocZqmkTZjEABWOE6krIH6JXuJHmhExS30VAdWUxTXkAzMlijNqw7jnzYoKY/IwSYiZQ24h2fQ+NcD6Cl23CMywVIoU6G7bRhpTmzZbsI767DlehKrTZmK8K46zMYoZqOdnAfvaO1Jp4wbl3SO0PbtxMrLUZqOd/zVGB7PmakgIU4gwVgI0at0lw33iCycX0onXhvCUZCYeMOKJm4r6w4jMYEIiXWTY9UhbJkuGv5YRs79l6KiJummIlzWQLS8meAn1UTKGrDnelBxC1uOB++1hUQPNBLZ04AVjmPLdCdGWWkamApsWrtlc48YgXPQII7MmkXLO+8w4Kdzz0idCHEimfRDJv0Q4qyk4haaTSd2LICR7kr0bnWNWFUQe54HTIUVMTHrwgDobhtWKI6R4cJISazkpCyFprcfiJPOpRSBNWtwX3aZzNIlksikH0KI85pmS8xDbc9NSdruyP/sd5uGYdNbA2+7eXQiEEPitrr3mmu6V1AheoAsFCGEEEL0MQnGQgghRB+TYCyEEEL0MQnGQgghRB+TYCyEEEL0MQnGQgghRB+TYCyEEEL0MQnGQgghRB+TYCyEEEL0MQnGQgghRB+TYCyEEEL0MQnGQgghRB+TYCyEEEL0MQnGQgghRB87L5dQ/HwJ56ampj4uiRBCiLPZ53Hi87jRW87LYNzc3AxAUVFRH5dECCFEf1BbW4vf7++1/DXV2+H+LGRZFkePHsXn86FpnVt8/FzQ1NREUVERhw8fJjU1ta+L06ekLo6TukiQejhO6uK4xsZGiouLqa+vJy0trdfOc172jHVdp7CwsK+L0WdSU1PP+/9gn5O6OE7qIkHq4Tipi+N0vXdfsZIXuIQQQog+JsFYCCGE6GMSjM8jTqeT2bNn43Q6+7oofU7q4jipiwSph+OkLo47U3VxXr7AJYQQQpxNpGcshBBC9DEJxkIIIUQfk2AshBBC9DEJxkIIIUQfk2DcT73//vvcdNNNFBQUoGkab775ZtL+lpYWZs2aRWFhIW63m2HDhvGrX/3qpHm+8soraJrW5iccDvfilZy+U9XFsWPHuOeeeygoKMDj8TBt2jT27NlzynwXLVrE8OHDcTqdDB8+nCVLlvTSFfSc3qiL/tgunnrqKa644gp8Ph85OTnccsst7Nq1KymNUoo5c+ZQUFCA2+3muuuuY/v27afMu7+1i96qi/7WLjpTD4sXL2bq1KlkZWWhaRqbNm3qVN490SYkGPdTgUCASy65hOeff77d/Q8//DDLly9n/vz57Ny5k4cffpgHHniApUuXnjTf1NRUKioqkn5cLldvXEKPOVldKKW45ZZb2LdvH0uXLqW0tJSSkhImTZpEIBDoMM8PP/yQO+64g7vvvpvNmzdz9913c/vtt7N+/frevJTT1ht1Af2vXaxevZr777+fdevWsWLFCuLxOFOmTEm6zp/97Gc8/fTTPP/882zYsIG8vDwmT57cOnd9e/pju+ituoD+1S46Uw+BQIDx48czd+7cTufbY21CiX4PUEuWLEnaNmLECPXkk08mbRs9erR67LHHOsxn3rx5yu/390IJz5wT62LXrl0KUNu2bWvdFo/HVUZGhnrppZc6zOf2229X06ZNS9o2depUdeedd/Z4mXtLT9XFudAuqqqqFKBWr16tlFLKsiyVl5en5s6d25omHA4rv9+vXnzxxQ7zORfaRU/VRX9vFyfWwxft379fAaq0tPSU+fRUm5Ce8TlqwoQJLFu2jPLycpRSrFy5kt27dzN16tSTHtfS0kJJSQmFhYXceOONlJaWnqES945IJAKQ9G3dMAwcDgdr1qzp8LgPP/yQKVOmJG2bOnUqa9eu7Z2CngHdrQvo/+2isbERgIyMDAD2799PZWVl0mfsdDqZOHHiST/jc6Fd9FRdQP9uFyfWQ3f1VJuQYHyOevbZZxk+fDiFhYU4HA6mTZvGCy+8wIQJEzo8ZujQobzyyissW7aMN954A5fLxfjx4zv1fPVsNXToUEpKSnj00Uepr68nGo0yd+5cKisrqaio6PC4yspKcnNzk7bl5uZSWVnZ20XuNd2ti/7eLpRSPPLII0yYMIGRI0cCtH6OXf2M+3u76Mm66M/tor166K6eahPn5apN54Nnn32WdevWsWzZMkpKSnj//ff57ne/S35+PpMmTWr3mHHjxjFu3LjW38ePH8/o0aN57rnnePbZZ89U0XuU3W5n0aJFzJw5k4yMDAzDYNKkSUyfPv2Ux564vKZSql8vudnduujv7WLWrFls2bKl3d5/dz7j/twuerIu+nO7OFk9dEdPtAkJxuegUCjEj370I5YsWcINN9wAwKhRo9i0aRO/+MUvOgzGJ9J1nSuuuKJffNM9mcsvv5xNmzbR2NhINBolOzubsWPHMmbMmA6PycvLa/PNtqqqqs034P6mO3Vxov7ULh544AGWLVvG+++/n7Rsal5eHpDo1eTn57duP9Vn3J/bRU/XxYn6S7voqB66q6fahNymPgfFYjFisVib9TcNw8CyrE7no5Ri06ZNSf9B+zO/3092djZ79uzh448/5uabb+4w7VVXXcWKFSuStr399ttcffXVvV3MM6IrdXGi/tAulFLMmjWLxYsX89577zFo0KCk/YMGDSIvLy/pM45Go6xevfqkn3F/bBe9VRftnedsbhenqofu6rE20aXXvcRZo7m5WZWWlqrS0lIFqKefflqVlpaqgwcPKqWUmjhxohoxYoRauXKl2rdvn5o3b55yuVzqhRdeaM3j7rvvVj/84Q9bf58zZ45avny5KisrU6Wlpeqb3/ymstlsav369Wf8+rriVHXxu9/9Tq1cuVKVlZWpN998U5WUlKjbbrstKY8T6+KDDz5QhmGouXPnqp07d6q5c+cqm82m1q1bd0avrat6oy76Y7u47777lN/vV6tWrVIVFRWtP8FgsDXN3Llzld/vV4sXL1Zbt25Vd911l8rPz1dNTU2tac6FdtFbddHf2kVn6qG2tlaVlpaqP/3pTwpQCxcuVKWlpaqioqI1TW+1CQnG/dTKlSsV0Obnn/7pn5RSSlVUVKh77rlHFRQUKJfLpYYMGaJ++ctfKsuyWvOYOHFia3qllHrooYdUcXGxcjgcKjs7W02ZMkWtXbv2DF9Z152qLp555hlVWFio7Ha7Ki4uVo899piKRCJJeZxYF0op9fvf/14NGTJE2e12NXToULVo0aIzdEXd1xt10R/bRXt1AKh58+a1prEsS82ePVvl5eUpp9Oprr32WrV169akfM6FdtFbddHf2kVn6mHevHntppk9e3Zrmt5qE7KEohBCCNHH5JmxEEII0cckGAshhBB9TIKxEEII0cckGAshhBB9TIKxEEII0cckGAshhBB9TIKxEEII0cckGAshhBB9TIKxEEII0cckGAshhBB9TIKxEEII0cckGAshhBB97P8DzRol4bHLI8wAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "#colour plot by vegetation type\n", "vegtypes.plot('Name_18')" @@ -718,11 +1232,86 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
RLE2021Endemicgeometry
0LCEndemicMULTIPOLYGON (((17.10320 -28.46677, 17.10289 -...
1LCEndemicMULTIPOLYGON (((17.25375 -28.79040, 17.25313 -...
2LCEndemicMULTIPOLYGON (((17.58954 -29.56134, 17.58923 -...
3LCEndemicMULTIPOLYGON (((17.58671 -29.57930, 17.58673 -...
4LCEndemicMULTIPOLYGON (((17.69563 -29.74812, 17.69407 -...
\n", + "
" + ], + "text/plain": [ + " RLE2021 Endemic geometry\n", + "0 LC Endemic MULTIPOLYGON (((17.10320 -28.46677, 17.10289 -...\n", + "1 LC Endemic MULTIPOLYGON (((17.25375 -28.79040, 17.25313 -...\n", + "2 LC Endemic MULTIPOLYGON (((17.58954 -29.56134, 17.58923 -...\n", + "3 LC Endemic MULTIPOLYGON (((17.58671 -29.57930, 17.58673 -...\n", + "4 LC Endemic MULTIPOLYGON (((17.69563 -29.74812, 17.69407 -..." + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "remnants = gpd.read_file('data/remnants.gpkg')\n", + "remnants = gpd.read_file('/shared/users/gmoncrieff/remnants.gpkg')\n", "#lets view the first few rows\n", "remnants.head()" ] @@ -736,9 +1325,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAGdCAYAAADDgwDwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXwc55348c/MLKN2V8xky8x2jHEcZm6SpklKV0jba1NI8XrF3/WuKV/h2rSXXtIwNMxsx8woi5ml1TLOzO+PVWQrxiSW8Xm/XnpF2pl95pl1pO889H0kXdd1BEEQBEE4oeQTXQFBEARBEERAFgRBEISTggjIgiAIgnASEAFZEARBEE4CIiALgiAIwklABGRBEARBOAmIgCwIgiAIJwERkAVBEAThJGA40RU4ETRNo6urC6fTiSRJJ7o6giAIwklM13VCoRCFhYXI8vi1Y8/IgNzV1UVJScmJroYgCIJwCmlvb6e4uHjcyj8jA7LT6QQyH67L5TrBtREEQRBOZsFgkJKSktHYMV7OyID8bje1y+USAVkQBEE4KuM9xCkmdQmCIAjCSUAEZEEQBEE4CYiALAiCIAgnARGQBUEQBOEkIAKyIAiCIJwEREAWBEEQhJOACMiCIAiCcBIQAVkQBEEQTgIiIAuCIAjCSUAEZEEQBEE4CYiALAiCIAgnARGQBUEQBOEkIAKyIAiCIJwEREA+xcUjYSLD/hNdDUEQBOFDOiO3XzzV6bpOw5ZNmC1mzBYr7tx8AJKxKJqmYbE7TnANBUEQhPdLtJBPQbtWvUXT+tV01+3F7vFicTjorN2NqqqjwTgcCBASLWdBEIRThgjIpxhd14kHA8y55AocPh/NmzfQtnsHOeUVmCzW0fOsdjvttbvpaWtBU9UTWGNBEAThaIiAfJJKJROED9LClSQJu9vN6/f8GZcvG6PVhppKomka3U316JoGgGIwMGXhEiwmM91NDfj7eo/3LQiCIAjvgwjIJ6l1/3yExg1r6GtvG30tnUrh7+6iaesmFlz9EeLhMKAT8fvpaajD6fERGhocU447N4+CymqCgwP07leWIAiCcHIRAfkkk0okaNiykdKpM+lvbaZt5zZ0XQdAS6eQZRlPYTGewmLKZ83BW1iMRqYrOzTQTzIaGVNeLBxCVhTySsqoX7OSaDh8Au5KEARBOBIRkE8yyUSCZDiEwWQiFgzSvn0za596DADFaMRos1G9YDFZuXkYTWbUVIryWXPxFZcQCfgZ7usBYLCjjcGOdrR0GgCDycSciy9nz+q3T9i9CYIgCIcmAvJJJh2PMWXZCrob9uLv6SK3oprkSKtWMRixOV3kFpeMnl8woQZXlgeDwciEeQupnreQsH+IXW+/jq+4BIvTBUA0EKBj904cHi8bn3uKrrpaOuv3oo2MOQuCIAgnlgjIJxF/by/JWJTgQB+Bvh5S8ThtO7cx44JLDnp+d0M9ax57EH9PFzvffJWX/ue3pFMpNjz9OC1bNqKpKrqeCbjO7GxKp8+kfMp0tHSKvpZGUtEorXv3HM9bFARBEA5BBOSTiCcvj6y8AiJ+P97CEmqWLGfJLZ/Ck5c/5rye5ga2v/oirds20dNUj2Iwkk4mqV39Nn0tTZx1zQ3c8l+/RVYU2vfWApnZ2Ra7A7PdTuXseXTs3sn2V1+goKyCjrpaUsnkibhlQRAEYYQIyCcZNZ2mt6mBoa52WrZtxrpf1i01nSYRjRAd9rPm8QfJq5zApCXL0TWNqcvPQ9d02nduY7CrA5AAqJw+84BrZJeWs+ITn8Xf283Ot14lt6SMoZ6u43WLgiAIwkGIgHySadm2mVQyQTIaY/ZFl7Hp6cfo7+wAYLinm449u9j49BNMP/dChnu7yC2rwJWdgzs3j4u+cAdZBUW48wuR5cP/09qzPFz7rR/QumsH3c2NdDfWH4/bEwRBEA5B5LI+iURCIdp2bqVp8wYc3mzadm4jp6ycdCJOV10tb957Nw6vj+v/7afsWfUmocEBNjz9OA5vNgajEavLRU9DHWanC1eWZ7Tcwa5OZIOMJ7dgzPUcXh/Lb/4Eg23NlNRMIRaNYLXZj/dtC4IgCIgW8kkjHBjmlf/5LTtef5nIsJ/QYD+RYT+6ptG1ZyeJWJQZF1xKYc1k/N2dVMyeh6+kjKnnnIeaTpJbWU1vSzNnXXMjhdUTxpQdD4fQUukDrjnU243D5aJq7lmkYjH2rH3neN2uIAiC8B4iIJ8kFIOBKcvP5cb/9ysMJjPRwDDzrriGvtZmkvE40cAwte+8xe63XmfHm6+yZ+Wb6JrGOw/fj2K2Ujl7His+8RmSqSStO7dRu271aNlFEyfhKyoZTTACkE6nsLuysDicGIxG8ioq6W9uJBoRiUMEQRBOBBGQTxJWu4OJCxZTv2YlZncW133nR8iyTOWc+SgGAw3r11AyYw7XfffHmMxm1j/9GJ6iYq74+ndZ+pGbScSiGBQDm556jLf+fjcdu3eMCcCxUJD1Tz2Gmk4B4O/phv3WIEuyzAWf/CydjQ3H/d4FQRAEMYZ80kilUhgMBmasuACbK4uiSVNp2roJb2ExHXt2Mu+q6ymeOBld06iYvQBfaQU5xaWj7w/192E0WwgM9HHWTR+nZt58JEkaPZ5Oq+SUVRDo7cXh9aIoBiyOsfsmy7KCLzeX+m1bmDBz9nG7d0EQBAEkff9m1BkiGAzidrsJBAK4XK4TXZ1R/e2t6JKEwWhCURT62lqonDGbVDKBZWSyla7rbH/jFaadfS5qOoXRbKFp8waiwSAl02aQlZNL264dSAaFkpopB1yjt7mRrLx84rEYbl82wYE+NFUja7+1zo3bNqOqGr7CInz5BQeUIQiCcCY5XjFDdFmfRLKLS8ktLsWbl487O4cJI93VFpudhs0bGeruRJIk1j/xMOFggM3PPYWmpimYUENX3W5499lKktj45KNsePpxtrz83Jhr5JZl9k0ebG8jHg4z2N5G246tpOJxAPw9XeSVlGG32djywtPH+yMQBEE4Y4ku65PI/l3MAN0NdVidLra8/Bybn3uSsumzuP57P+GKr32bVCKObDCgGIx07tnFnpVvoKXTTD33QlzZOfQ01hMaHOC2n//32Gu8uz7ZoKAYDeRWViMrCuFhPwOtzRRMqKFp22ZMNjuTzrngeN26IAjCGU8E5JOQpqrUrn0Hk9lELBzCaDSBrjPU2U46mSSvohpJksi+6noAbF4f3sJicsoqkCUJDZi0+GxyK6sy5WnaAYlCSiZOZv1Tj7H4+o/iKy5luLcHpy8bu8dLVm4eweFhsgsKj/etC4IgnLFEQD7JhIYG2f3Wa2x85gkmLj6bpTfeQrC/D4CaxWdjMJkAGGhvRUunsWR5KJpQw8LrbsKdm09/dxfFk6Yy48LLsLlc1K5+GzWdZurZ5465jtFkwmgy0bR5A+27tiPJMstv+RQAnXt2sej6jx7fGxcEQTjDiTHkk4xittDb0sS0cy9E11S2v/oim559gqz8QspnzQOgbfdOnv/vX7D5hWeQJYmmzRtY+cDf2bPyDVKJzFiwzeUmGgoR6O9D03Vi0egB15p/5XX4uzrY9PxT9Lc2kxg5x1tUcsC5giAIwvgSs6xPolnW+xvs7MDmclO7dhUFEyeTX1Y+2vXc3ViPpqpYHA5c2bm88/B9VM87C6s3G7vLhcVqAyCdSjHQ3kp4aBCTw0nppANnXWuayj++9RVioSDTz7sIT0ERSBKTlyw/3rcsCIJwUhKzrM9wvqJirE4nlbPmoo0k89j07D95+lf/QfPmDWSXltPf2kI8GqVw8jQ0owlfXv5oMI6EQhiMRkx2O7tWryQrJ/eg15FlBbvXR9g/xJYXnsFgNtPTUMdQVyeJqMjaJQiCcLyIgHwSC/uHeOPvf+HVv/w34cAw2159gZZtW8ivnkD7rm3sWbsKq8PBxHlnUVo9EYDQ4AC1697h+d//EgAtnebcj30Ci83GzrdeIxo+MMjmVVbjKShCRycrr4D23TtweL0YTObjer+CIAhnMjGp6yT29iP3UzB5GoVamrWPPYjNm82Sj32asumzad62ialLz8FgGPtPaHE4cOcVUDk7M94cHfYTUQcw2Wy0btuMt6AI28RJY96z8NqbqJw9D393Fy/+8dc4PF5MFutxu09BEARBBOST2qWf+1cAdrz1OhMXLycrO2f0WPXcs0glEwe8x2i2YHc6ya/K7PhUOnXG6LHLvnznmPf0tTVjtjlwZ+dQMGESkiwTD4dRDAY0VUVWlPG6NUEQBOE9RJf1KWD68nPHBGOAVDJBIhYDYNfbr9OwcR3xkVnSLl8ORRNqRs/VdZ3e5sbRn7sb69F1HYvDSW9jHf1tzax98lHadm5n+a2fIhGN8sa9dx+HOxMEQRDeJQLySUpVVbT9dmN6r3ceug+zxUpwaJDOhjpyyiroa20hMNBHV10t4aFBwoFA5mRdJ5lKERn2s/ONV+lva2HN4w/i8maTW1GNquksuuYGpp59LnmV1Vx55/dp3LCOvtbm43S3giAIggjIJylFUQ7IrgWQjMXoa2miq76Woa4OXF4f05adg8lmw52TgyIrZJeWkkomiPoHiQYDSLJM8YQaGjatR9N1ale+QdfePajpNFm5eeSXV+Lv68VgNuPOycOTl4ckS7xxz58J+YdOwN0LgiCceURAPoUkYlFAx2A0MWHBYoxWG7qu09fcRGhoCH9nOyarFZPFhjs3H393Jw/94Fs07diGJElMX3EB6WSCs669kZKpM4gFA6Nle3Lz0NRMizw0OMDyWz7F0ptuxenxnqC7FQRBOLOIgHwKUFUVAMVgRDYYMdpszL/iWrz5BUiShD0ri9BAL+17dmIaWYccDQyz6sF78Xd1sObB/2PXmlUkohEiw35ioSC733qNtl3bx1zHaDbRtnM7isnCxIVLyaucQDqZPO73KwiCcCYSAfkUEB7pNjYYjRiMxtFWazKRIOwfIhYK0rBhHe68zN7F0XCIoc4OLv/ad5m4ZDlh/yB7336dunWrMVusxEMh5l1xLdXzz6KvpWn0OkazhdJpM3C43QBsfuFpkvHYUdWxvaX5sGPegiAIwuGJZU+nALPdPuZnXddJp5L0t7fRtWcHBZOnYbTYSIzksa7ftJ4pi5YRHOjnii/fSeOWjXiLSrC7XDRv2Yjd7cFbUkpgYACHx8twTzdZ+ZlgHo9GsdgyrezuxnrmX3ndEeuXTiawGo0HHfMWBEEQjo4IyKeA7r17GOrsQDYYmH3RZUiSRCISIb+8ApPJiMXuoHv3Dna9/TpqLMqERcswmkyoyQSdtbupGkkSAlA+cw5mm510MomtuBQAq9NFKh7HaLGg7JdopGTaTEKDA7iyc3g35Xk6lcT4ngxeqqbjyc8/Dp+EIAjC6Us0aU4BnbW7cPp8lM+czdaXniMy7Mfh8aIYDAz3dGG22zHbHZz7yduZuGwF6594iMbNG5BNZqy+7NFyGjetY+0TDwMgyTK6phEc6COVyARjyGzL2FFXS3jYT9GEGqKBYZq2b0VNpUgnEgcEYwDFYEBRxLOdIAjChyH+ip4CjBYrmqqiGIyUTJ1ONBjEaLFgslipmDWP+7/3NUwWK/Ovuo7wQD9GhxNvSTnP/fo/KJ8xh+HebqatuIC9q1eSXz2RdCpJJBgkGQnTsXsn0eAwMy+4FLPVxt61q8jKL0BXVfIqqgDobWuht6UJk8WCr7gEWVZIxmOZQGww0l1fS8nkaSf4UxIEQTi1iYB8Cph98eXUr1uN0WxGkiSGujrILiklGgxgdbo459ZP89Kff4c7rwBZlpmyaBk7X3mOwY42dE3HYDHjLa1gxSc/j2JQaNm5nerZ88CXja+4hMYN6wgPDdDR20Ogr5fyGbORDcbR6+eVlrPtlecJDg5SMXse6Bqh/j6KJk8jnUwiG00n8NMRBEE4PYj9kE/S/ZD3N9DWQn97K5OXLKdh41oq58xHlhXWPvEQ2WWV5FdUERoaIBYMkVdZxZrHHmSou5P86oksuPojdDfUkVtWgd3lRlVVkrEowf5e8iqq0TSN7vq9mZavwYDJbDloHXpbmnBl5yDLcmbplUkEYUEQzgzHK2aIFvIJFAkFGeruoqh64iFnKOu6zqt/+yMOj4+ahUvJr5nC8OAgw+2t7Fn5JjPMVqrnLsDh9RENBrC53My/8loiwSCP/PBbtG3fyswLL6Vi+iy2vPoipZOmMNDeSvvunQxN6cHh9aGmkvS1NDHU0c6siy47aD3yyivH8ZMQBEEQREA+zlKpJG27d1G37h12v/06pJJ4K6q55s5/I2u/CVjv8vf20Fm7G5PVhqwo2B1OHE4XnTu34u/uQjbs25HJ5nLT3VhPOhGndcdWPAVFlEybSfG0mQDMPv9iYpEQPnTsWR5ad2xFTyWpnLOA1h1bsY2sPxYEQRCOPxGQjxN/Xy+NmzcQ8Q+y8clHxxwbam7gyV/9jNt+ctcBLWVvfgHX/dtPSUajBAYHcbjdKAYDRqudkqnTkRQD8WiU9U8+wtQVF6KmkpgsVkw2O+d88nOUTZk+prxkMo23sJhdb7xKVl4BzVs3YXW56W6o4+ybPz7un4MgCIJwcCIgHyctWzex8t67D5nNarBhL2ufe4rFV1xzwLFgf19m/Badxi0bmTDvLBLhEEaLhf6mBvIrqnDn5NG0cS2xUJClN96KyWYjFY/TtGUDBqOJ4snTCA8NZlrblkxqzIGONi44a/HIbO254/0RCIIgCIch1iEfB027drD68QfRVBUOM4du3WMPEBgaHPNaOp2ifuM6JAmcvmzad2xh5xuv4CspxebKwlNYxOYXnqZ6wSLmX3Etyz76cWRFoW7tO5htNipmzsVss9OwcS2BgT6mLDuHqrkLMNvtFNVMxmSxjvftC4IgCEdBzLIexxlzuq7z6j/uYfuzTxz1e3ImTuH6b30fm8OJpmm89eiDFFdU0L5nF97SMhRJwVdcjKbpOLK8WBx2gn29GExmvIVFo+X0tzYTGhqkqGYKZpuN3qYG+tpbmbpshUhxKQiC8D4cr5ghAvI4frhvPvIAmx5/4H2/z+R0seCq6+lsqKd57Uoq5y4gt6yCSDCIu6CQ7IJCkskkBZUTMl3ZikJgoI/QQD955VVIsgySxLbXXmLuxZcDjGzT2IhisZBdWHysb1UQBOG0JQLyODoeH25vWwv/uPNLx6w8mzuLopopVM07i56mBhweL/2tzWhqmrOuvgF/dycbn/0n08+9iOBAH0tuuIXwsJ94NEp/Uz2l02bSXlfLxHlnYTAaj3xBQRAEATh+AXlc+y6vvPJKSktLsVgsFBQUcOutt9LV1TV6fHBwkIsvvpjCwkLMZjMlJSV86UtfIhgMHrbcRCLBv/7rv5KdnY3dbufKK6+ko6NjPG/lfVv92IPHtLxkLEb9+tU0bt3EpEXLmHbO+Zz7ic/h9OUw0N5K/fo15FdNpHjaDGacfwnBgX7SiTgSOp7CIoL9fSgSIhgLgiCcpMY1IK9YsYJHHnmEvXv38vjjj9PY2Mj111+/7+KyzFVXXcXTTz9NXV0df//733n11Vf5/Oc/f9hy77jjDv75z3/y0EMPsWrVKsLhMJdffjmqqo7n7Rw1Xddp2bT+mJaZTiYAyMrJJRqNYDCbCfb3Ur1gEd7SMs6+9dN01u4iEQ7hzsklKy8fb2ExZpud7NIydF1nwvxFx7ROgiAIwrFzXLusn376aa6++moSiQTGQ7TUfve733HXXXfR3t5+0OOBQICcnBzuu+8+brzxRgC6urooKSnh+eef56KLLjpiPca7+0HXdf7w2VtIBANHPNdgNGF1uwkN9B/x3OyyCsqmz6ageiJh/xCl02eSU1I2erxx0zoGu7tYcPm+pVPdjfXklJbTWbsLX3EpDo/3g92UIAjCGeq06LLe39DQEPfffz+LFy8+ZDDu6uriiSeeYPny5YcsZ9OmTaRSKS688MLR1woLC5k2bRqrV68+6HsSiQTBYHDM13iSJImiSVORFQXlCF3EFpcLs81+NIWiKAa66/aw8ZnHCfsHxwRjyOx1LGkaj/7kuzRsWEugr5dkNMLqR/5BoK9XzK4WBEE4iY37X+hvfetb2O12fD4fbW1tPPXUUwec89GPfhSbzUZRUREul4u//vWvhyyvp6cHk8mEx+MZ83peXh49PT0Hfc/PfvYz3G736FdJScmHu6mjUFwzmannnI89a1+LNKe0nNLps8acFx4cYKCt5YjleQoK0dQ0wf5eTDY73XW1pFOpMecE+noxWCxc+Lkvk181ga66PaipFMs++nF8RaUkY7FjcWunpZ2hKM90D5zoagiCcAZ73wH5hz/8IZIkHfZr48aNo+ffeeedbNmyhZdffhlFUbjtttt4by/5r3/9azZv3syTTz5JY2MjX/va1973jei6jiRJBz32ne98h0AgMPp1qO7wY2m4p5sdr72E05c92gIurJnClGUrgMys6aMmSSy48nqW3nQbkcAwvqISVnziswdM0GrZsY3uvXsI9PWy6fmncOcX4CsqITDQh7ekBH9P1yEucGbS9vv/0KTr1JhED4IgCCfO+x5DHhgYYGDg8C2J8vJyLJYDt/Hr6OigpKSE1atXs2jRwScYrVq1imXLltHV1UVBQcEBx19//XXOO+88hoaGxrSSZ86cydVXX82PfvSjI97D8RgPaN62ha69u1j7+ENjXpckGV3PpM+02B3EI+FDFyJJePILWPSRj5FbVkk8HKJt1zamnXMBocEBvMUlmK02JEmis7GeHS8/x4KrrmegvY3CSVNwuLNGH1R0XWfDs0+w4IrrxuV+TyWhVAoNibQOCVUlqWlYFIXP7GjinmnlZFsPvgWlIAhnppN2+8Xs7Gyysw/clehovBv7E4nEBz5n7ty5GI1GXnnlFW644QYAuru72blzJz//+c8/UL3GQ8XM2aQTh+8ijkcjhz1+9sc+ic3lZs1jDzL30qsYaG8hK68A0Nmz8g0SsSjTzrsIp8dHdKCfmRdciqegCIvLjdFsJhmLYbJmUmPqmobdlXWM7u7U5jQa6YolcBpkfFYzAA3ROE6DQmM0LgKyIAgnxLj10a1fv57f//73bN26ldbWVt544w1uvvlmqqqqRlvHzz//PPfccw87d+6kpaWF559/nttvv50lS5ZQXl4OQGdnJ5MmTWL9+swyIrfbzac//Wm+/vWv89prr7FlyxZuueUWpk+fzvnnnz9et/O+xCMR1HSKrS89e8Cxd1vHIz9gslpxZucgyTLFk6chK/uekXzFJZROm4kEtO3ajsFkJjTYT2hoiIKJkzj75k8g6aCrKiXTZmLL8iBJEsl4nBd+/yt6mxtHy5IVhZKpM8bztk8phVYzzpEuf1XXcSgKZ3udBNUzLk+OIAgniXELyFarlSeeeILzzjuPmpoaPvWpTzFt2jTeeustzGbz6Dl33303S5cuZfLkydxxxx1cfvnlPPvsvkCWSqXYu3cv0Wh09LVf//rXXH311dxwww0sWbIEm83GM888g6IoB9TjRNj+xivc/cVP0bZz+2HPkySZdDKJrqqYrTZ8JWWYbbbR41teeIZ4JEz5zDkYTSYGO9oonjqT8PAQhRNqsDhdpBIxjFYr3Q21pJMJUqkU4cAwS266DYvNTmTYP1qeKztn3O75VPTuGHJHPEFYTRNOpuhLJE9wrQRBOFOJ1JnjMB7wwL9/k+69u4/6fJPVhsFkQtd13Ll59DTUAeD05eAtKmbK2eey/slHCfT2UDl3AQuuuQHQMZjMGAxG4uEQ/e2t2D0+CqsnHN0yKoENgQhznVb8aY2hWJy6UJgap51qt/NEV00QhJPIabcO+UyhaRp9+3UVH41kLIqmqqSTSRKRMDml5Vz3vZ9QNmM2nbW7cfqykQ0GSqfPxFNQiNFkYrinm77mRiwOB1n5hWipNK1bN4hg/D5MtJkJRaNYZIlql52QpGDijHs+FQThJCEC8jEW6OtFTR560tqhxMMhrE4nKz7xOT7y7/+BrmkE+nqYuvxckvH4yNhwDEmWcXi8eAoKMVmsSJJE7TtvoqZTFNZMHoc7Oj3puo4KxIwm7AaFlK4zw+3gbx1iLbIgCCfG+55lLRxe+gME43cF+/vwFhbRvGUjkiRz0e13EB32o+s68XCIvuZGhnu6adq0AV9JKQUTalj/5GMYrVbyqyeSXVx6DO/k9BVRVbYPBliUuy9pi0mWmeKwMjfLcQJrJgjCmUy0kI8xg/nol8woBgMTFixm6U23jb724h9/Q/vuHZRMn4kkyZhsNt66729k5RVQNW8hYf8Q0VCAJTd8jGQ0yuSzV1Axaw5v/+N/aT3CJDIhQ9V0FuaMzfSW1nSG4glciviVEAThxBAt5GPM6fOBJMFh5sqVTpvJ1HPOJ7e8kuySzE5MW156loh/iI49O4kEhnnjnj+TiEaYddHlfOTf/wMtnSYWCtC4cS1FEyfTumMbBrOZf/7nD3HnFbDs5k9QPHnacbzTU5fLeOD/9gY5k2WuLZE6yDsEQRDGnwjIx5jBYCS3uoa++tpDnpNbUcWUZSvob21GTadRDAY8BYVE/EMA+Ls68Hdl9ncumTKN5i0bCA70M/fSq7BneUjEomx69p8M9/ZQvWARZpuNvIpqJLF5xIcSjie5pSTvRFdDEIQzlPgLPg5mXXT5YY9vf/VFHvz+ndz7zX9l75qVxCNhIn7/Qc+NhoKgQ8euHbTt2s5td/0BgGQ8hsXhYLC9laKpM+nvbD9kLm/h6BS77DzQPcTqniNvhSkIgnCsiRbyOJi65Gzevv8e4v7Bgx5PxqJ01e0B4IXf/xKbO4toYPig5zZuWMt13/0xmqax+PqbScZjTF56DulkApvbQywUYPKiJcjyyZEU5VSzNxShxmknmFapDUV5rd/Pa8DifJFERRCE40u0kMeBLMtMWrhk9OfZl11DzdJzDnn+oYIxZJZRNW5az9SzzyURi9FVv5fJS8+hdftWtrz0LJOWnCOC8YdQPJLL2irL5FtM3JLnIaaJtciCIBx/IiCPE5dv3wYcE85azOQlyz9wWasffYCmLRsIDfRhz8qit6kBNZ1i0uKzMZpMx6K6Zyy7IdNJZJQl4mmVlwcCmPfPNy4IgnCciC7rcZKKx0e/Dw/2k4wffuenw1EMBra+9By177xNOplATadQ02lKp89G0zRkMZnrA3k3a+y7Y++SLBOSFa7NsR3ubYIgCONCBORx0t1YN/p97ao3Ge7u+sBlxcMhAFKJTJC3OF0kYzHeuOd/2Pnai9QsPYfyeQvJKyr+cJU+g+wNhnGZTfiMBnRdxyzLlFpNfLc8j7d7h0509QRBOAOJptU4CQ3uS8HYtGk9QyPLmD6Md5c1GU1mLE4XBrOZpTd/nEBPF9n5BR+6/DOFqmm0xJIUmE2YZBnzu5+rJJFrNfO3gSCbBg4+6/2IjrAHtiAIwqGIgDxOpHHYCjK3vAqA0GA/8VAQe5aHztrdzLzwspNm68lTQSiVZu2A/4CtFiUgmFZxKQo5Nuv7L/i138N/LwF/Nzz/c4iGjk2FBUE4I4gu63Hizslj4H3u+nQkvU31QCaxyDkf/xdSiSTu3Hx8hUXH9DqnuyyziR9MrULXdfrjSZK6To7ZSCSt0ZtIUWW3Ek6l33/B530JjAr8aRlc9DMwi7FoQRCOnmghj5Os/MJxKXf2JVdQUD2RvatXUTlrrgjG75OmaWiahqrr1EcTvBOI8POWXjYFo9RF41RaLVybm4VV/oBJViauAJMRqs8G0WshCML7IALyOMmtqDrgNXdePrMvvuJDlbvlhWfY9soLhAb6PlQ5ZypZlpEkibeHQrwyGGQwleamAi/VNjMVVjP+dJoJDgvrB4ffX8HhYXjsy/C3CyHcBb+eDF17xuMWBEE4TYmAPE4qZ88Dw9gRgay8Ana88fIB52aXlHHzT3/5vsq3uj3omlgve7Q0TaMxGufZvmHeHgpRZTOzzOPg1kIfMxxWPAYD/akUMU1jZyjGnS39729iV98u2Pl/kAqMvKDCO78fl3sRBOH0JALyOLFYrdS8JxlI6/YtpBMH7peclV9AZ+2uoy47p7yS5bd8SmwmcRQiaZWOWIJ1wShN0TiTHGZMskSW0YBZgoFkmrim0xJLkCdLVNksTLRbyDIa2BiIHP2Ftj0Gvgkw79P7Xtt1P7RsOPY3JQjCaUn8RR9H8y675qjOa9iwlrf+8b8HvG51uka/lxUD08+7iCU33cb8625GMRqPWT1PV0k104PQmUixLRgl32QEXWKmy4bLoFBqtRBRNXwmA4PJFFnmTNazIouJu2pKWB2MHv3FejbDBT+CadeCyTHyog6r/3CM70oQhNOVCMjjKL+snMLps9/3+4onT+OyL99J8ZRp2D1eACYvPYfCCZOYe9lV2Ox2DGdgQFY1nXDi6Gc/K+jc3z3IUCrNpTluym0WyqxmbCOTrcwSTLBb0HWdn7f08ou6ttH3XpTtZoHLzsbuoxirb1oPvVshbyrUvQiFs6HibHDkQ/2z0LD6/d6qIAhnIBGQx9n8S68a/V4+yKzb/VvB7rx8nNk5XH7HtyidPovLvvxNiiZOxuH10b57B3tWvcFAeysmi+WMTJepyBKaqrK6vg/tEOPnA9EYw6k0g/HE6NrsC7PdlFrNOA0Kxv1mT6/uy2TkeqpvmK2hKF7j2DH/L1YV0RqOED7IMMMoXYcXvgUTLoL+vVC5AmouBWchpKKgpyDY/iHvXBCEM4FYhzzOiiZOGv1eU9XR7925eRhMZrLyC2ncuJb8qgnc/NNfEg2FkNAxmMy07dxK285tXPaVb5JTVkHT5g14CkuwWD9A0orThMtmZm6ph7ahGOXZ9gOOZ48k9IjKMl3xJDOdNpRD7BO9ND+zAcjrQ0EUCWb4sg4457oJFYev0KNfg/QQlF4BRXMz3dXF86H+ZXDkQSIEIRGQBUE4MhGQx5nV4cCZm0+or2fM64G+XmZddBlbX3oOhy+ba7/7YyRZxmK3c8/XPs+5n/w8zVs2Yrbb0TUNe5aH6edeeILu4uQSSmlYjAdf45tMp3m4sx9JUcgxKizwuA563mAiiV0Co6LwSZ8Dg6YRSSQA55ErEOyD3S/A1gdgcCfMvAFm3gT2kR2+jBZY8V2Ih+Dl70HkA6bhFAThjHLm9XueAHnVE8f8bLJa+fgv/kD9uszY4oWf/VesDie6prF39duEBgZ48uc/xt/dyTXf/iHBocETUe2TlkmR6A7EeHNvH7quj+m+NhkM3FpWQJXJwNlZTjymg4+1e01G/q+tB0VRmOZ1o6oqTw0Ej3zxLU/BAzfC698DXyFc8jOY+VFwFUJqvzzWJjtYs6BsMTS89iHvWBCEM4FoIR8Hsy66nIbVb4/+7PBm88pffo+vuJTp511Exay5AERDQUqmziC7tIzQQD+K0YQsK0w/5/wTVfWTTkO3n/9d3cZ/XDdz9LWW/iBb2oMsqPBS7LUTCMdYlOs9bDmSJDHf52HX0DCP9w7zUiCGklZJptOYDIf4tVj7fxD3w3nfg3Qc/M2w5R+w5I7McaMV0knQVcieCIoRurdC49sHL08QBGE/IiAfB2WTpuAqKiXYmZnFO9TZjs2dxef/597RtcRDXZ3sevMVBjvbUdNp/uUP/4vJbDmR1T4peR1mFldnj/4cS6r8ZVUbOQ4T184tQdM0nt7Sxq3Lao5Y1qvDYX7V0gvARKuZurTK/U0dfHJi+cHfUPs4fOQeiAch0AGV50DHBsgq3XdOZAAsTtA1UFOZ2dZN73yIOxYE4UwhuqyPk8u+9HXKZuxbAlUxax6SLNNVVwtAX0sTU885n/62Fq6449siGB+C12nj3Em5oz8PRZMMhBN84ZxKVFVFlmUmFfsA6PRHaPEH2BuMsHY4TEwdOzP7uf7A6PfLnGbsisxPO4eJJsfuAjXK7IS6F8BXAe6CTLd0Igx7ngFNBU0DV0EmKIf7YagFendBInDw8gRBEPYjAvJxUlhZxfXf+wlVCxYDMNjRSjIeo2XbJgAsWR68hcV85r//hq+45ERW9aRnM2fGhQOxJP/v2V1IgGVkrDiWSFHhs9M9GKTIY6enL4I0HGRhloO+eAJd10fL+VZFPlMdFv61NJd8m5Uvl+RwS4GHZ9q6D37hRCgTaNPJzPf2HLjmz5BVAmo6E3wBvBUQj0AqBO5SqLlsPD8OQRBOE6LL+ji74ivfpG7jOho3rqWrsZ65V1wHQGnN5BNcs1OP22ri6xdN4muPbGNTq5+5ZR6sioLVbASsqKpKjts2uma7zG4lkkqjyBIWReEst50X59aQ1DQ0XUNFYtKqnSx1WrjxvRfTNOjeAb7KzM85kyA6BL27oWwpKAaQM5m+CHSAyQr2Ilh/NzjFjlyCIByZaCEfZ4rBwOSFS7j8S1+nfOoMzJZM1/TBkoYIR/bPzR3819WTaRsIUdcbIpHat9ZbURTSuoRB2fe/ud1ooC+WQFVVHCOJQuwGBUmScSgyF3udbIok+Htdy9gL9dWBGgNJglBXZgJXMgITzge7D2IBsDhgqCnTlZ1dmQnW3gqQzcfp0xAE4VQmArJwyuoPRllRk0N1fhZDMZVSr41QJEIknqQnEOeFHV2UeG2U+Bxj3hdNqzzfO0QwvS94OwwKrw2FWBWIkGVQuKVqv2GDaBDuuwksLlj0JfCUZ9YYS1Lmy+wEuxfcReCrAqsn876SBZmlUC7RQhYE4chEQBZOWTkuG3PLfRgUmVyniYFQnOwsF3aLCYMi8U7jIL2B2AHvm5Tl5LKCbLYFozzcPURfIgXAX9r7CasaDoOCYf8ei+e/D1oArv1LJuAmo5ku6uwJmeO6npnc9V6KATo3wsEThQmCIIwhxpCF08IVM8e2QrMdZr5z8SSMysGjoSxJNAXD/HtrP16jQq7JSG0kDkBvIkVaVTNBebgLdv4dlnwFnAWZwNu3B3InQ+MbULUi00pWTAdeJBmD8mUgi18zQRCOTLSQx8nwoMiudaLZzAYU+dDN089WFrF10RS+V1nI3kgcr1Hh8yU53DO9gsFYJjjTvQ2mXANTr8t0RUsyWL2w9o9QMDMz2QvAcJCAbLKC0QZx8f+CIAhHJgLyOFn35CO88Nc/nehqnNEkSRrd8elQ8i0mbsrLYuuiKfz3pFJ+WF1EbzLNAz0j+aeTQZDlzCQuxQgGc2aseOEXMmPH8eHDV6JiGQR6j80NCYJwWhMB+RgKDg2x5bWXATjvtn9h9xsvs/7F505wrfap7w2R2G8i05nAH86MIQ+FDhxLfpeiKORZTLwxGOTp1i6uyc1iRbY7c9BogzmfgPhIco+YPzNR67mvQTwMtsOn6MTsBJv7GNyJIAinOxGQj6H1/3yY1//yOzob6zEYjZRMmsK2Z59g86svkk6njls9VHVs0K3vDaHrOh6biXcaBnirrv+41eVEiieS/PzFWvpDcYajSfyh6GHPtxsULBYL7bEEKwdGArDBndkcwl0EkhEUWyZIz/t0pkv6SJLRzHplQRCEIxAB+RhKRCMAbHr6cQBKZ8xmwqJlzDznfAyGg+86NB7e201rkGUiSZVsp5loUuUww6qnla5Agp9dPxuf3UxlnjvT9XwYN+e6CejQGEvy6bI8hmJx0uULYeEXM7s5WRxgsYHRDDuegb76I1fCZMuk1RQEQTgCMf3zGIlHo7Rs3QhA/bp3CA70UTFrLkabHeVQuweNI13XkaRM5JWkTAKN6cVZXD6j8LjX5URIqRo7uoJU5jqRZQld1+nsH8Zjzz/ke4odNvpG5mg91ONnssXIVJcdlyv3wJNn3QxFU45cEV3PBGV/F3jOjM9eEIQPRrSQj5GmzRuIh0fWouo6L/7pt3hy89i78g02v/z8ca+PJElomoamadhMClfOLCQQTRKMp9jTHaC+N3Tc63Q8GRWZq2ZllkJtbOwlkVLJ9boJxw+xcQSgSBITbGaKTQbmO60MRKO4zAeZPQ1HF4wh8zSUOxHqxZ7IgiAcngjIx4jRMjY9Ytfe3Qx1dWKyWCmfNuOE1CkcT7GjM8iGFj9um4nlNbn4gxHqe0JsaT0zluJEYgmGExoWkwFFlhmOpfFHEoc8P8toINdkYJLdygSjed/yp6M0HEnQMhCmvi9E7/DIQ49vAux6+sPchiAIZwARkI+BntYW1v/zkTGvXXT7HQAkoxF2vPkaYf/xn9jjtJpwW42YDPsGjctys7h4eiE3LCg/7vU5EexWM+dPKQAgklDJdphJvWcbxvdSFIVUQuW1n2xn5V92EQ0feoY2QGS/VrfRoFCQZSWZUnl+Vz/b2/2Z3NbBRqh7+8PfkCAIpy0RkI+B1q0b6WmoG/Pa87+7i/u/+1Xadm3jrCuvw+p0nZC6BSJxKnx2gNGtB02GM/OfvdRnw2JUyHVZD5iJ/l4WqxFJkujcE+DVv+8mlTz4LPltbYP86pV6dnZmZmXbzQaMssyWtgBuq4n+YDyTQvPK38GWfxzzexIE4fRxZv5lPoZCw376W1sAMJjMFE2aOmYS10BrCz2NdSdkYpckSVTl2mkbivD2ni4i8UN31Z5pVJ0xeyO/l6zIeMoym1K07wzw+gO70bQDW9ZVeW7mlXvZ3TnMz1+sZX3TAIFogkXVPi6els95UzOtc0rmQzoM0dN77F4QhA9OzLL+kHa8+RoDrU0gSWiqSnZJKbquE+zvJR4O4ykqZtPzTyGbTJROnnbc6+ewWlhU5cMgQcdQmEhC5a+rWqjvDfGJRaUsrMrGcqiJS6cxk+HI213GF5igGeJuA69Hk+x9aztfWj5jdH/lvmCc7R3DeOwm7GYDl88qorEvgsdhwTOywVTnYBCfy4bFaAZPETSvgqmXjOetCYJwihIt5A+ppGYy6WQCdB1NTbPtlRfo2rubWDBAOpmgu34vLVs3seaR+3n9738ZXat8PFlNRh5c20Khz0Velh2P3czHFlVw9qQC9nYHSByiO/ZMpY60hPfkuEhYZVqm2CndHiL51DC/emv7vvN0ne3tfibl2jl7Yg42k4HpxZmsXPGUyqr6AYaiKoaR5WfkTIadTx7v2xEE4RQhAvKHVDJ5Ktf92/9j8vLzmH7eRRgtVs791OeZvGwFkrTv43X5sskuKcNss5+Qek7ItfPM1k4Abl1URoHbwmObOijKdmE2Hb+kJe/H1jebePS/1rPxlXrSqfS4XkvVdSIj48rDiQSv9w6yMCeLeI0T18hEa2tcw7Q2TjSceaHAbeXji8tZ+vPXeWh9G+1DmUxgL+7s5rLfraTMZ6NpIEJ3cGSoYOLFkPRDb9O43osgCKcmEZCPAU9ePud/+na8hcXIssze1Svpb21BkqVMYgjA7vFSOXveCavjoppC2geCPL+jG6fFyD+3dLKjM8Bg+NDrck80k81AX3OYdY+38/wfd+AfGJ/xV13XaQxHsY9kOHObLdzbF8ChyEgSGFOZf8PoMi/Xfmwyxv0eYHxOKxdN8vHrV+uwmw0MRZJ0+GP0BRP8z1uN/HVVM53+kZSdBgtMOBeeuXNc7kMQhFObCMjHiMlswep0kYhG6KzdRW9TPdp+M3k3PP04T/7ip/R3tp+wOn5yaRWqqvJGbR/fv3wK/37FFPyRkzcg18wpwp6X+b59j58X/rCLVPLYp6GUJIkKm2X0Z4MskWsy0hZPosR15HCmdW5bOcSaRxuJR8dOjvv44nJmFLm47k+rmfOTV9jVFcRjN2E1yvzt4/NIa/DE5g4aIkbwlEPnG7D678f8PgRBOLWJgHwMWQ6xtEmSZCxOF+lEglX/+N/Dzu4dT1kOKy39Yb72yFa6hmPoOsyvOMJuRSeQYlC49qtnYRrZLMnfHeWlv24//Js+ION78n87DQqX52QxtcRB3LnvWDqS4s0trWPOnVGeh5SMkes089OrpiHrKjfNK+L2c6rx2M0sqfZx7ZxiqnOdUHMxnPNtaDj+2dsEQTi5iYB8DFXMmsv5t99BbkX1mNfP/8wX8OQVMOuiyzHb7KM5pk+EFRO9OMwGvvbIVmQJlJN8pwlXlp0bvr0AR36mnq07/EQC7y971tHa/0GpIRon32zEXGHB3pcklpvJxDbUFaHj0R7q9vbR0NIxev4fP7mUB/7lLG5ZVMYvb5rL1bMKMSkytT1BNrQM8tqeXl7d3UMwloT82RDqHB3OEARBABGQjylZlpl5zvnc+p+/Yf51Hx19PTw0SGhogNBAH9ULFjHY033C6jitLJeLJ3lxWYxop0g8cHscXPf1s7B4AB1e+J+ddDYdegvJaCzOA6vreWhtM4OBo5/Vvv+Dkk2W+UlDJ3vjUbKGUgy79rWSNU1n/T8a6Unsm51uMCgoyr5fp0Kvg4Sqcc+qFm748zoeWNeG1Sgj6TpMPB+mXQ19jUddN0EQTn+SfqL6T0+gYDCI2+0mEAjgco1PBq10KsX6Z59kzUP/N+Z1h8dLPBKmat5CLvzcl0CSMZkthyhlfKys7aJ9OEVNnoO5FT40TWMwFCPHfWJmgB+t/m4/j/3XFrQ4OH1mrv/OXGyOsZ9dPJni9d1dzKvK45VdvfSF4nz1ghrSqoZBOfrnz4Sm8YVdLXy2GTY+30LIqWCUJSyBfbO941d4+fplsw5bTiyp0tgfpjLbjs2837L/38yAJXfC/FuPuk6CIJwYxyNmgGghjxuD0cjCqw5MmRn2D5FOJkHXadq0gfad24573WaXelnVMMAPn93DZ+7dyCfvWc/zu/qOez3er5wCD5fcPhmA0GCCjt3DB5yTUnU2tIf5zuM7iCbTPLu9m2Ra4+6Vzfzq5b0MHeUkNrMsk2U0EI9kWsGOkEqixMYFn57CJZ+fDhIkWuL0NAcOW47VpDCtyM3dbzeyuytAc//ITPGcydDyztHfvCAIpz0RkMeRLMvMuOjyMa/Z3Fm48/Jp372D5353F0//8j/QD5KScTw5bBYC0QQ7OgO8tqeXL59fw8cXVxzXOnxQ5TUFzL4yM/W6cUvvAcedVhOXTCvgtdo+7lvbxr8sq8QgS1w+o4BYSiWWOvws7f3TY06zW2gb2VhCAlAkrHYTxZM8lE7xoigGdr7VcfCCRnT7wzy8roUvnz+RKYVuKnKcmQMrvgO9O47+xgVBOO2JgDzOqucvHJPHOhoYJtDbQzQwDGQmEqnpNK07trLrneO3G9AvrptGuc+KpmeW+ZxKFl86laqlDqacm3PQ48UeK59fXkXbUJQfPLWLa/74Dm/W9fOlcydQlGU9bNnvpsWMqCovD4VoGjk95jYiRVUat/ZjshionptLhzFF09YBkrFDJy0p8Di48azyAyfyFc6C838A6vgmPDlVdPYf/93QBOFkIwLyOOtsacY4/8LMRvXv4c7N44Yf/IytLz9HMhYlGQ4S6D+w1Tce3q7r5eY5+QD88pU64kdoOZ5sLr5lATaLA/09M9NSqRTZNoVvXzKJaUUukqrGto4A339yJ60DEeq7Dv+HX1VVVFXlRw1dvDEUQh4pfrjahr0+TMu2fuKRFJ58O46EgdYFNqLvI7lKdyDGwHCI+o5+tKduh44t7/veTzfra9uIJI9vL5EgnIxEQB5nk89awj2BCl4uvwHJ6hhzbOo557P5+afY9dZrWJwuTBYrsnJ89vvY0R3l3OklVGbbOXtCNulTZcr1fno6Bljz1NiZykajEV2HRza0cc7EXOaVeQDw2k0UeqwYjzCxS1EUvlvfyYPdmcAtjTynWCIqChAJJNn0Qgt55S4md6aYEzAS6Isedm15IqUSiSdZ3TDAa3v6QDGxoy9BtGAhbHvwg38ApyBN0/CHogyFooRH9pGeXlHIxKLsE1wzQTjxxG5P48xmtXD/p+fz1I4+Gt8aprL5pdFjm557kkvu+Db+zg5KJk9jsyWXV1qiXOPxjvta5Z9cMwNJkrhmdhGfXlqBJEk8srGdK2cWYjEqBGNJdnUFmV6chcN8cv5vMn1RJZ31/gNeN5tN3DC/lMb+MB67iV/eMJOt7cPI6JRkO4kn01hMB97Tn1p72RoM89R+KToNsUxElsz7lj1FhhNIssTsC0pZ+XAd5ovK0dIaivHgO0iFYincdhN5LjOLq7NJJJJMLnARMH4e28Bq5I5aKJ70YT+OU8KeTj9v1A0ST6lcPauIbBdk2c683cYE4WBOzr+0p5ma4my+lO3iM009EK2H3iZM+aWk02ke2h3mK1ddCMALuwe4e2UzNgUunlkyrnV6N+C3DUVHv79mdtHoePLDGzpQZIl2f4wb5o1vXT6MogmeQx6rynFQlZPplSjz7VvSpeoH757fGozw4mCYGquJulgS034PRWnrvmBrtBpIJ1Wmnl3EntXdtGwfJLvYedAy39rVzn0be7h1UTkLyjNZ0QwGA4VZFpKOBcjTl0H9Kvr9YWSDgs95+DHuU1kimWJtQx+fO6cGoyITTaaxHeTBSBDOVKLL+jixWUz89TPLWJ1zNpRN4xHnefzGdjl/3ezn249v54lNbbyyu5dcp5mB6PEZz11Z389T27pYWZ9JsmFU5NHg/PHF5dTkO7lsegGD4cThijllbGrqR9f1Q+6FbFFknAaZp2dVcZbTyhU+B/GReGEK7EsCUr+hl5A/jixLVM/LpWXnIAbTwcucXJLDlAIXCys8aCPd2ooi47IYcVszm1T0583D/M5dRDvqj+HdnnxqO4f46JIJo8MGIhgLwlgiIB9HVpORX3/uPFqnX83lS6diMhmZX5nDm/VDfO3RHbQMRukLJfjLyubjUp+93UFuOauM7/1zJ62DEX77aj3/WNtKWtXY2DKEBNT1hmgZjJyw/NvHUsdwjPq+8CGPtyfSDKRUJGBHJMFjAyE2VyukAb9lX2s5FVfpbQoCMGVxIf6uCP39ITR138SkruEo/aEEJoPMFTMLMCoK9pGu/5SqEY4l6d7wIoMP3E7OQ5fgSvRSsu4HEBkej1s/ITr6h0e/13WdqSU+EYQF4TBEQD7OSnM9fHR+Ef/7ViNJVWN9yxDhxNilL+FEmm89tp1fvribzS3HdjnIM1vaeH1PD3XdfpbXZNPYHybfbeHmu9fx4q4e8l0Wosk0//70Lu5d08rsUg+T8l0MRZK09I/P9ofHS1LVGY6mDnoskU7TFU+iAA6ziV9X5uIzKKwHXvyIF03T2X8e8Gv37uHxn2/i1f/bjdVpZNdrHZntNkcYFYVshwmTQSbbYUYeOdYdiLHljRfRGt+k7KWP4qt7ADyVcN3/wLzPQPeu8fsAjqOeoSBrG/Ylm5EkCYNBBGNBOBwRkE+ARZNKeOSz85iWe/CUmUORJCaDzIopBaxv9dMycOhW3fs1udBDlt1MeY4bgyLzoyuncsO8Er56wUT2dAf555ZOhiIpHr99MXPLPPzy5b1c/Nu3ufDXbxNN6TT0BlHVU3OJykfml7HgELtbDSVSuIwKKvBKZy/Lcjxc682MO+82SETLjWDcb6KdDj1NAVp3DBIJJKntjtA/HKN9MISu6+Q4zUiShM1kwGExEkmk2dY+TLZFZ0G1C7fTAVYPGG2w6I5MmdMuheol4/shHCcPb+rksrkVp0XPiiAcLyIgnyAzK/J49mvn8fbXl/CHm6YzI888ekyW4CPzilnTOMj0Ijer647d2uTqPCdzSj2YDDJFWXZKvTYSaZXv/TOTNWp14wDhRBq31cinllZQ7rOzoNxHqcfMb16to3kwNmYThdNFgd3Kj6sKAfhN9zD3dw9yd18QlyLzlRwH3kEgdejgMpRK85cna9H7MuPtgVimJa5qOgZZYiiSpNRjId6+A579GqSikD8dCmdD8fRxv7/j7VNLKrGajEiShK7rDIbjp9xad0E43k6/v6ynmNKcLC6bVcoT/7qCGl9mks/kAheVOQ7uemkvsaTKBdOLAfjTm43c9Jc1x2ySlckg448muW9NK4m0Rp7LzJ0XTcJtNbKt3U8irXL5zALOrcnmsduX8IUVlUzKP/hs4tPBTLuFSXYLW8JxftqS6W4NqhpqMIZ3w/Bhf1ncTVFac2TeuG8v8VhydMLWuxO5ArEkTrOBdzbWMjjvq2jPfBWySjMB+TQSS6TQNA2Hdd9Spm0dAT5xz0berD3586ULwokkAvJJwmBQWDgx00JrGYjw93eaMcgST2zpIKlq6LrOU1s78UdS/N/qFloHM9sKrqnvoXM49r6vl0ylWVXbic9h5prZRQBYjAqXzyhgY8sQW9qHkZCIJlSmFrpQFIVcu5HCI6SePJVZTUauz3Ef8PozSR1z4sjd9I5+lXaHzNZX2wBIqxrrm4cIJdJMynchSRIXl8dwdbyNbvVC89vQsfG0SJ8Zi8UZDMUJhKPIsjxmHf1wKEK23cCrtX1sah0U3diCcAhilsVJpKkvM3O3LMvIL16uA+D5HT28tqePRZVeGnpDLKny8NULJqJpGt97bDM94TSfWFJxxBzN75VSNRaNPABcM7uI53f28N83zcZlNXLNnGK6/VFSmkZPMM7kAhfxVJpP3buFTy0s4oaFVcf2xk8il+V5SEsS/9ncw2U5bp7rD5CnHd1zqzmsolsUmrcMMvuSSjqHYyyu8hGIpWjpC5Fv1XDUPouxZeW+N6kp2PUizLj80AWfAmSDAZ/VABw4L+KcKUWcM6UIVdPRNG3ck94IwqlqXFvIV155JaWlpVgsFgoKCrj11lvp6uoaPT44OMjFF19MYWEhZrOZkpISvvSlLxEMBg9b7jnnnIMkSWO+brrppvG8lXGXTKVZ1+Tn3Go337pkMj+9YgLfu7iab55XxhOfm89/XTOFL68o567rpvOjp3bw3LZOZpXn8LuPzmHZhINvsnA4douJtKYRS6rkuiz8902ziKb2tdQKPDZcFiOTCzLbRyZSOg98ZiFFngMDfyASI5469Vt5ABU2C/50Zqzzuf4AJknCrB+5dewpsHPlnBxym6PY3GZW7umh3GcnperYTQaMbW/jcGfBxx6FkrMyb7KOJDV56lPw5Bdh++PQsBIevg3+fDY88UVQT41xV7PxyM/2iixhPMQacEEQxrmFvGLFCr773e9SUFBAZ2cn3/jGN7j++utZvXo1kNlZ56qrruKnP/0pOTk5NDQ08MUvfpGhoSEeeOCBw5b9mc98hh//+MejP1utp3ZXaiCa4LPLSqjrj9MfSoCm85lzamjoGeYrD+8gkVZp6I9w9+oOQvE0/7K8mo3NQ6Q+xIzngUCULIeVjqEwL+7q5ZrZRWxr91OV62Rt4yApVeOS6QW80zCAxagwt8zDkprCA8oxGY0Eomks7lO/w+X+zn7WDUdGf74xx0W0b9+exymHQtptxNoZH/M+f3eEmbqJG3+ykL17B2h+qgN9cj6DoSh1AzE27Exxx+QBgk9+C+/QyDrzdAIUM6gJ2PoP2P4QaPs92HRvg9m3QMWicb3n9yudVkmkNewW42HPS6Y1TIbMM39a1UhrOpZDpBcVBGGcA/JXv/rV0e/Lysr49re/zdVXX00qlcJoNOLxeLj99tvHnPOFL3yBu+6664hl22w28vPzx6XeJ4LDYuL1Oj8mo4GFE/IocGVmXXvtZnZ17+sxCMUzf7ANssyfVzbzg2d28+ePzWJhde77vmaRLzNBy252MD0/RI7TwkA4STKtkesys7J+gL+ubCKt6Vw7p4hYUsV6kIxUVpOBVQ2D2PvDLCjPOiXXmyY0jX/Z2cKWYJSB/Vr79/UFkAHfBDt59RFSJpkdlWZcLpnJe6JjynjlsXq2p/r5sjeXeDJFR62f8unZFHidnD3hGiKJND2TPg1aAreyDSXYTsReit2ayLSa86dD3UvQs31focljt+TtWNjU2EOJ14HXZTvgWJc/CpJELKWS77LQ6Y8RjCeZV+7DoMhsbB1kYaXvBNRaEE4Nx21S19DQEPfffz+LFy/GaDz4k3VXVxdPPPEEy5cvP2J5999/P9nZ2UydOpVvfOMbhEKndtIKq9nIX2+dTctAhBv+Zw2b2zOtMq/TOma/4hKvlcpsO89u72JPd5BALMVtf9/Ez5/bifohdmwq89lRNZ0ij5W9PSGu+sM73PXSXv7zhVr+84Va/vB6Ax3+KG39AdL7tcpTqczynjKvhQUV3lMyGAOYJImhVHpMMAYoMhvRgHfmZMZGbUMpnIMpzED6PUOhxrhGVhdsaetDmWClbn1muZqu6zT2hrCbDUyev5iOZb8gWbyU54u+zfo5v4ZvNsNND0DVuRDuy6xNlkZ+NRteGec7P5Cmaexo7T/osblV+eR6HBgOsvRNkSXWNg2yt8vPfe80sLq+l0fX1DEQzDy4iGAsCIc37gH5W9/6Fna7HZ/PR1tbG0899dQB53z0ox/FZrNRVFSEy+Xir3/962HL/NjHPsaDDz7Im2++yfe//30ef/xxrr322kOen0gkCAaDY75ORoU+Fx+ZV0xXIM7H/3f9aIAtGRm3PavCyyXTCrAYFRZV+fjiiszkqmRa448rW7n17tW09I7N7DUQjPJ/K+uOeO1sl420quKyGLEawGfPLFs5d1IuZoNMZY6Du1c2saZ5mFhKZWNjL7FYjFA8xaZWP1W5roP+kT4VBJIpftfcTV1kbDe016jw+OxqHIqMW9rXM1DdEEM1yUQq7bTNdOL37nvALGqMoltsTJ9fyDv2FLvXdyFJEkmN0Yxs3cE4yrnf5tJPf5MV2tuZvbJlBTzlkD0Bzr4T3r2es2jc7x9gMLivm16WZdY1H5ghLpZUGY7u2/tZ13WiyTR7e0L86uW93PN2Pd39Q1Rn2/j8uZP4xLJq/uuji8g+SGtaEIQDve+/oD/84Q8PmFD13q+NGzeOnn/nnXeyZcsWXn75ZRRF4bbbbjtg2cOvf/1rNm/ezJNPPkljYyNf+9rXDluHz3zmM5x//vlMmzaNm266iccee4xXX32VzZs3H/T8n/3sZ7jd7tGvkpKTd/eitKpx0/wSokmV3V2ZB4fvXlCO2SBz1/Uz+caFNeS7LUwtdPOlFRNYXJmZGKRI4I+rXP+XTbQN7uvmDMTS/PK1ZrYfosUDEE+kGAhGRifmpNJpnvziErJsRvpCCf728flIEpw7KY+0BmZFYl5VHlarlTf29PDjZ3ad0ktZkqrKpTluvlSSwy8mFHFxtotKq5mhlMqde9u5Md87ZoeoqM8EOli6YpRuC9GUZyBulVGBNyebYYOftlCM7KiKgUwzusBtwWnJJMq4aHYFpuxy6NmRGUfuq80UbPPBrU+SaNsE2kiKz8pzxvXeVVXlV89t5d41raOvpdNpbl5USSSeqcO7/7Zmg8z65iH29mSyke3s8POTp7bxwye3MiPPzL+eX8MXL5rBxCLREhaED0LS3+df0oGBAQYGBg57Tnl5ORbLgcsfOjo6KCkpYfXq1SxadPCJKqtWrWLZsmV0dXVRUFBwVHXSdR2z2cx9993HjTfeeMDxRCJBIrEvmUYwGKSkpIRAIIDL5Tqqaxwv9V1DDMU1vv3ETj52Vin/sqySq36/km0dQWaWZPGjyydR4rURisTpDCZY1TDAprYQkWSaXSMB3Gs3saTKy8+vn0UglqJ1KMJf32rkwik5PLChkyybkZ9dPQWL2cRPnq1lRpGTMq+VcyZnPu9H1jVzw1kVfO+fO7h/XRvnT85jXrmHC6fk4bEZ8dgz49vv1PXSPBQjx2nhoqmnz3j+UCLJhuEw32vqpiOeQgKmGo1c849MF/RwpR0lkOK1ZQ7Oak6j2hS2uXQue2mYuAKV07IwLM6nRE+w58VeLrx1GqrLQK7zwN+JeCKFxWwkEo4g9e3EtvKnMNwO/maouRKu/TOYx7eF+eg7tTT5U3zr8kzGsERaxR9NYjcqOK0m+kMJ0pqGx2Zi6X+9TonHysWTPCyvyae6wEMyrWIzH36ClyCcyoLBIG63e9xjxvse8MvOziY7O/sDXezd2L9/cPwg57zXrl27SKVShwzgZrMZs9l80GMnm4pcN3f8YRU1eU5+91o9u7uGaejLdCcGYyk+f/9WZpdmsaXNT0/w4J/RUCTJi7t6eb32FbJsJn55w0wSGtz5xG4AbppXRPdwjNkVTv7fNdN4o7aPOeWZVo2m6axuHqbIN8DmtmEA3qrr4+sXTqQ3mKByZH/h/3mzgatnF3FWpe+UHTeGzHhpIK1ikiTsIz0EXrOJi/K81MaSvNI/TC4qgX09tWQ1ReitsTNze4yCpkxSlqKR8WSLCl3bhiEaZm+li5s/PYXmnX1MXLivV0bXdYYiSXwOM/5Ymq1rt7Gs9gfYA3sgOrjvQmd/Y9yDMcAlcyr4f09t4e63m+gLxvjc8ipsJgMNfWGqcuD12l5W1g9wx/JSfnvDdLoGg3xk0cTR95+qQxWCcLIZt7+k69evZ/369SxduhSPx0NTUxP//u//TlVV1Wjr+Pnnn6e3t5f58+fjcDjYvXs33/zmN1myZAnl5eUAdHZ2ct5553HvvfeyYMECGhsbuf/++7n00kvJzs5m9+7dfP3rX2f27NksWXLqJ+b/zSu1lPoc/OHmOVz4m7d5Yks3kGn1BmMpBiNJXtjZc8RyUqpOSlWJJGPc9rf1XDo904L90opqgvEUn7x3K098bh5ZDhv/t6aFUp+NjsYBNrX6sRgV/vBGA92BGNkOE9+5ZDKfu28TX1lRAVWZwP255VWZPM2n+B9jWZbxmA68h6FEkuUWhToFQprCLMvYc/L2RhhyG+iusFLQHEN6bz9TfRrfUJi2aTHMpQ5cVuPoLHVJknBZjXT6Yzy9rYsL8gyY9RWk94Qx7B+QlfFtdQ4Eo7y4rZ1ISmPFtBJKPDayrNlsbhtiUr6bbIeJdQ19vLy1mWtmF1NZ4KValoHTpzdEEE4m4xaQrVYrTzzxBD/4wQ+IRCIUFBRw8cUX89BDD422Vq1WK3fffTdf/epXSSQSlJSUcO211/Ltb397tJxUKsXevXuJRjMzNU0mE6+99hq//e1vCYfDlJSUcNlll/GDH/wARTm11ziqqkYspfGf183gx8/upmG/vXurcuxsaPEfdVkmCabmW5lV7OK+Db14RiZp/WNdK/kuC3PLPDy/s4+tnSF8djOrGwa5b20rE/OclHqtnDMxm+0dAYKxFA9taKMnEGfpfglIJEnCoBy7jEu6rjMQjJLjth+zMj+IllgCXVWJaTqvhhI8HshM9Go3GLgeCJTZUEJpHENJvIE08cOU5fZaqX+nkwlTsujNcaHrjC4b29A8xE+f28P/u2YaWnczdVoxNYoBkICR6N66GvKnjNu9Zrts3LKs5oDXC7wueocjvLi9k7MqvfztM0de9SAIwoc3bgF5+vTpvP7664c9Z8WKFaNJQg6lvLx8zIShkpIS3nrrrWNSx5ONosg0D0T4xD3r2do+PPq6x2Zke0fg0G8cIQG3Ly7A5zBz2awSsl02DAYDHts2Ht3eS5nXRutQlGK3hWhSxWQy0jwQwR9Ncf3cYu44fwLXzslsZBGIJnlhVy9b2obZ0OJnTmkWsfTYZA/H0v++08KiSg91/QMsqc5G0zRk+fi3vq2yTK7FRH00weV5WdxWnMO2YJj79rQDYAqnaZ/uoLAzgaMhgiVwkAxlEtgKLXR7U5h3JQkarIQr0lSNdPcD9IbitAxGiKc0ZhVlIT36VQi0jS1nsGE8b/WwclxWzp2cR8lBcnsLgjA+Tu3+xtPM6vp+NrcH2dI2zP5T7apzHSTSh87I9W5q4JtmevnmlXP49LlTyfe6Rsd2b79gGl9cUc1F0zJdjbW9YYZjKd6uG6CxP4JBlnhmW9doMNY0HZfVyF3Xz8RskMl3WWgbivJ2XT8Pr2umJxD7UGueD8ZskIkmVPb2BAlEU6xqOPzEwfGSZ87MhJ5ot1BgtbB2cJgL8nzcs3Q6uWVOTNE0vv4k0nCKyCQnbZPtRN+ToWx3lsZj0RBaX5pEKE3n9kF2vtRIb3Bfe/qa2cV855JJBGJJNu9phopl4HxPFrTtD4B2/Pee1jSNne2DIhgLwnEmAvJJ5Mkt7QyP7KP7LqMs4bWZDvGODF0HoyLx448sOOhxo0HhqllF3HHeBJ7/8lLOnpjDZ5ZV8JXzJwCZhA7lPhs/eXYXe3uCPLShDU0Ht9XAD6+YwieXlPPyV5fjshrRJJmUqo/2WrT0HbnlfjTOq/HRPBhhTokbm0nm7boBBsNx/raq+ZiUfyR9iRTp/R4ydF0nqevoI087ikFBViSSBVbs/SnsA0nstSFK90Ror9qXttVkN2A0y1wRNiM3Z2aCRUNJ+qUEgXCSDv++7F63Lion322lyhrMrD2+/n/HVioegJe+P+alcCyBpmlo4xSod7f1841/rKapZ5jW3qMfIhEE4cM7dafHnob29kWxmRRSqkZK1bl+RjbzK3zMKHazcm8v0cPsM5DjMB82cb/VpKBqOlMK3fzvJ+Zz39pWPvbXddx8VimlbhMfmVeEPxxHU1NoyRgDwSiNAxECsRQzSzz0BOK8XtvHLz4yE0WWUOTMxvO5rgOX8rwfuq6j65BlM/PrV+u5bHoBJT4H180tJhBJctdLtZw3KZfy7PEdW859z7IdSZKwyjJXFe1LSeorsVHfF0HuTPHW1V6q+nTkuIa3L0FPlY38xijJSJoJEVDZFzBNNgM6FuSeKO4pPnZ2BphWlGl9zirJIp57GyT6wVsBjjwI9+6ryN5nwOyEQCdc8WtefG01zUkz1y+eTEW+55h+Bn97bTt94TQ/uG4ubvupnRteEE5FooV8ErlsWg7RpEpKzbTUPra4mhsXVTO5JIdFVd7Djt0urzp89+K9K+sJjGRZenZ7Fz97fg8LK318emkFmqzw0IYONrQO0+JPUJpl4vv/3MbT23pwWo2srO/HoEicOymXdU2DY8a3bZYPt5zs9do+6nuDtA2GkZAYiqRoG4ry6u5e6nqDxFMatT0fLLNafyRKNJk88omHYJYyDx2DyZH84VUOjENJ5CwjVd06xav95OwKgcOAI3Lop6VOR5rCEgsNG/tp2dSNPdY92sOwszOA2WSAUA9aPAjR92TIGm6Ft38G2+5F//1cykvzOGdG1VEHY13XiSdTRz4RwGDlO1fNEcFYEE4Q0UI+iUwvysKoSJwzMZtJeQ4k9nWh5jrNFLgttA5GD3jfhdUO/uMjcw9b9tXzyrCbjcRTmcARTaq0DUa4/k+rOW9yLtW5TiJpidBQjLfq+vn4okp+8PQuNrb6mV7k5q6X9uKyGPnCikp2dARoGwxzzZwPl/Gsxx/mKw9tRZYy84pjSRVd1/n+kzvpCsRHd7La0x3i4mlHlyRmfzl2Gy/0+Znm1CmxZh4cOqNxskxG7EexDaBxZElXSFUJhJOkNR1jb4I153sorc+sPzYmNHJqD70BRF5ekuet8JkJWdTKATY+08qiS+zUO8NMzHMyrchNStXQ82YRGB4mZyRDl15+NjHZia3puUxu6/mfRtv+OFabnTJlAMg74FqhcJTWnkGm0QjdOxnau5lvGT7HlAIXNTkWLnW0w8SzD1rPwVCMa+cWH/EzEQRh/IiAfBJZNCGPnT+88IC9ZaPxJE9u7UaTZL57Xin/8drY2bg/v2nBYTd939kZoGs4xvxyLx67ib+tasZlMXDe5DwGwwke29TJRVPz+NPH5lLbG2RmcRbVOXZ+csUk9vbHqMlz8sruXsLxBAZ0rp5dTDD2wVueuq4jSRKJtD6a31mRJTRdZ2Orn3AizVBkX/mVOXbWNA6yqOr9p2TsDEdZOLKUStN1/GmVIpuFhKYRTasokoSsqthMxkPO6i6zmPjuzkauHNZRgKWvHv3Yqj1ngH+fnkdRfg5ZXi/mXo3eLqiYprC5zU9VjgO31ZgZs1YspB2FKIpC+oKfYcupQK97EarOo76lFX/xpzDLVrSXvwTePJh2PfG8Ocgtq9m9cw+fbZrCQAKWWPq5TdrED7UrSBiCfP2iSZT5bPDGg7Dqv+C8H0P3Joj0Q8lCGG7B7JmCvXQWbPknTL8CTuFkL4JwqhK/dSeZg230vr3DT0wFRdbZOxBHlkDTM+MNWRaZLMfhuxh9DhMr6wfY1JZp7X5kbgk7uwK0DEQYSbXM7u4gb9f3M63IzUs7W0ECkyKRSGU2FKjKtfPc9iCDURXDcIyiLOtoYH0/QrEEe7pDIElU+qxU+iw0DcZRZAk1rdMTiKPqOh6bEX8001r81St1rKjJZUKuneyDpJ88lLSmcV6+D485MylOliSmuTLB2SzLmEcSggwlkzjkTAs6nU6TSCXQJI3+SD+pVIrqnGq+Vl3MP+/dkLmHQgvm3jimw4zpA8gGiSGLxsVnn08wkcZlMSL5ZKJ7Y3jsRkq8Vp7a2oXZIHPh1HyKPDZiNz2GLuso+VNBlpCmXcdwNMmGYBbN/RE+t7wQR6wNfddKpF2P8qbvc1w0+Fe2z32Yf792Krva/eSby/lT3WS0QJyZBS7eruvnI/NKsM6+Gbb9HR75JET25a7GWYjjE8+CyQKvfRte/jZUXwzLvpgZ1zaItJiCcDyIgHwKmFaURXW2lamFbh7fti9L16eXlHD78qojvj+RTBOMp6jw2Xl1dy+XzSjgwil5KLLEvz25k7/eNo/ybBt/W9XMjo4AV8ws4Nnt3VTlOLhlURlPb+3i44vKWFzpYWPrMFfnZHYger/BGCCa0ijPdhBNqsTT8MXl5axvDVHfH2Fz2zDJkW7qd4MxQOtgNJM17H0EY8jscRxLpdF0nbZoHH8iwcws1wEtYa99X3rKHz21g7fC3yBBmChRSg2l/Od5/0mhVk4qlKlTe7WVUL7CWZsjHI67EJ6nhjUPbuGTSyqYW+Zh5lmldFdHcFqM9DTu5VevdHHp9HzuXdPKg59diLV46gHlZNlM9Abi3DS/mKbOPnJueZz6VY9SPLSBkHMh+kc+zUWROO7iHJZWZ2M2yJSXDtHUH8FrN/HjZ3azsCobT3E5fKMW1BT01kI6DLIRCmaAceSznfVRWPVr2PH3zJdsBt9EqDwPzv0OmD/cJD5BEA5NBORTgMNqpsSp8Fb94JjXZxR78LoOP/s4rWpsaPXT1B/m0Y3t5LstVOc6+MVLdZw/JZdkWuP1vX28/EQPP7xyKoVZVjw2E5fPKOQ7T2xnZX0/zQMRhiNx0rrE0gnZo0Hzg9jSNsx/vlCLLEmcU5PDzQtKuGpOOc0DIW68e8OYrur9Laz0EYwlcVkPvwRsf3aDgSqnja5ECpdBQcNyxGQj184vR9r0HV4M/hsAbek2Vrav5LaJVaNJtApa40xpjR3x+m6lk8XVC5mc76IqJ/PvpCNjSUXoeOJ5epqDfCw5xDmzv0xDXwRV01nXPIhRkclxmEdnlsdTKl+7sAZN03HbTAwmo2xJVlD0sTtpfnEbcXcZefkWBkJx1jUNUFOQxeLKbBZW+PjPF2u5eV4B5b6Rhw5ZzgTZ4pkHr/TCL2YC9prfg9EOvkkw8yaYeYMIxoIwzkRAPkX86mML+MK961nTtq/lqBxFHuneYAyv3cyS6mz29oSo6w3z4s5ecpyZLtqfXj2Nhze0M6fUg8dmwmUxsLcnyJ/fbmZmcRa5LjNGReb3b2bWA184Je+guxYdrVKvnY+dVUY4kWZKgZPqPBedwzGMskwseWAf8CXT8nltTx8ranKwGd9/alSzLFNsyQTxgXSchKYRTmukVZVci+mAVn7rQJi3GxTycs+lhWcwSAb8KT9D2gAun4XgQBzPUQRji8vIv/Z60F7cy50X1bCmaZAyn40lVdlEBxXeeLkQKCR/nsxQJMXnllfyzLYu7nxsW2ZDkI/MRNc1KnKcWIyZJWsbW4b4/RsNfG2OmaXLzmHt3g7uuHQmppFhjuyRXbduvHsdv/jILEo8Vq6ZXcT0IvfR92Y4cmDxV6B4EVSdDZaTazc0QTidiWVPpwiPw8q5E/dNajLLsKD8yEtfXq/t44sPbEbXYWKek59dM53zJ+cyFEnQMRTjld29bGr1Y1AktnUMYzYoVOY4afdH6QrEyHaYWTYhmxfvWEZ1rgPjUeYLD8VTaCOJNhJplWgyTV8wzvrmQS6Zls8VMwto6A0RiycoyrKiGAzEUgcG5B2dAYyKRF1vCMNRzIw+HJsio+o6kXSaXIsJVc8kOGmL7Auwl0wv4Dc3zSYZOJcCJrGseBlfnf9VvGYvWflHv/OSYlEw2WWunFlIUZaVhZVeqnIc5LrMTJyRh7dwZKLZsIN55R5W1vXz+zca+OSSCvyRJN/95w52dgXpCcao6wkSSaS4550W9nQHmT17FtsGdKoKvKPB+F0Gg4H/uGoyZV4bQ5EkM4qz3v/QgjMXpl4ugrEgHGciIJ9CbllWw9zCTOv06pl5ZLuOHCDqe8Msrsrm16/WsaZxkH9u6eTpbV0Ue2z84c0GXtrVwy0Ly3hzbz+zSzw09IXY0uZnRU0uOQ4zr+7ppcMf47ev1nP3rfOYXnx06RQdZgPhZJpALIUsSQSimUxYC6t8eB0mqnOdXDS9AIvZRDKVxmc34rIc2GHT4Y8RSarw/rbtPiiDJGGQJPItJoJpleFUZhOJEtu+Fr/ZaGBCrp2fXzOXaP+nuSD7MmxGGw6bA1f20a/PTRo1DHJmuVquy4xBlnhhRzeD4SRpCRZdWwlAdCiBBPSHk/SHErxR28eXz5vAW984B1WDUCyNP5xkQ4uf6cVu7v+Xs/j7O80UZlnxOq209WVmfDf3DY9euzrPzTPbu8g6QoY3QRBOLqLL+hRiNRu597PLeHRdEw7LkWe++sMx1jQNUpBlY3hkktSqhgFWNQxw04ISsqwmXv/GcmwmA4VZVr75+Db+fMtcphS6mVfu4emtnUwpdFLqsWW+fId+ANB1PbNOd6QbXZIkXPvVsSDLSkrVUGSJnkCccp+d6lwn8ZRKJJZC1VQUeV9LLt9lQZZgaqELWZZYMfnDb/nXl0zhNiiEUylcJiOqrmJ7T7d/Q1+INU1D3LyglKc/v4JYKsb27u3MKJjBzkgf3gIbQ90HrgVPKRKhWS6cu0MYYxquZIyPOXfxxDYjrUNRJuY5+MEVU5FliUgijUMZRJIgEUlT29rPdy+dxKbWISQkkmkNRcm0rgFKPDb29ga5dnYR965pIZRIo+owsyQLg+xA13WcVjPRRIq2wQidgQSTC1zjsgmIIAjjRwTkU4zdYuITyycRjR1u4z9QVZXvPbGd+r4IDf0RjIpEStW5ZnYRZ0/MZvnEHG6cU4TNZCAcS6LIEj++ahqN3X6mFLrJcVr49LJ9M7g7B4MEY6nRbRzfq3UwQrbDhFExEY0nsVnGnheMpXBZjeQ4zHQPx+j0Ryn0ZAJ8Iq3y8IZ2/NEUuU4Tl07N5fNnV2O3GkinVbIc1g80o/u9dMAiS7SnNawGHa/pwIeaqhwHPruJYCxJfX+Y/mCMy2ZMR9d1qsmiobv/4IVLsMuts2Aky1pSVngwWEYwneCV3b187uxKZFlC03RisRjm2A6qimUa2j1svK+egi9N5/IZhdy/rpU/vtnA1EIXDouBGcVZuK1GPHYTFqPCYCTJIxs7+NKKaiKJNEZFprE/wl9XNrGp1U+xx0pDf5iPLypnYp7zQ39mgiAcP+IR+hRlsx5+YtUDa5p5fndmx6QKn507zp/IV8+fSInHSiie5m9vNVCandkOcHd3kHKfDT0ZZ8nE3IOWV+RzHbRLGSAcT5PnshKIZ8aAbRbTmN2gMlspZlp+siwxvTgLl81IStUyQSaaYl65h6+fW8GvrpvKZ5dX81bjIEaDAZvVzMbG/qPaTEHXdUKHSRM52W6hKxJlosNKWtNJHWTHKkmS8NjNOMxGfDYjTQMx6noCRGJJahbnIO/Xih+stLHqBi9brvIi6zrLXg9iTmbKjCgGgunMA4fVqHD/ujaGo0l6gnFa29pwrvoZOZaOzLndSVp3DbKqfoA7L5pEmc/OT57djc2k4DQbUDWdHz29m/94fg+GkRZ9StWwmw3E0xqfvXcjr+7ppaE/zOrGQdqHYnQNxxmOfvDkLYIgHH+ihXwaSqdV/mfVvsQPVpPC7csrkeXMfstpVWNCXvnocUWRmVGchVHxHrbcQ83qfnpLGzcvqmR4IElRVmacNZOrORO8ZFnGYd733mRaw2Yy8NqeXgKxFIORJBVeK1fPK6fYY2VT6yDekYxin1xczoxyH7IsHzERSVjVxqTE1HWdoVQa30hL2CTLyEYjCU0jy2QYs7vTexkNMi6ricn5TnKcFhw2M9aJOfhmt9O/KQTA0GQLSx8Zonm+HUWFnkl2smsjGABpQKPaOUCDmk2uy8yMYjdtQ1FmFGcxtKsDJBmjcd8ktqf7gvzLsgpW1OSQ6zSzuzvI5/+xmae/tIQH17XxWm0fj31+ER3+GOubBqnrDfHirm7Sqk7TQIT55R5UTScQSyFJ8I91rRgViW9dPGnMQ4QgCCcv0UI+DSVVDWVkve2Cci8/uXra6Prb4iwLE97TlTm9KIu+4OG7wA8mllRp7h3m0un5hOMpJKTRXNmG9wTvZFojnlIZCCfY2DqEUZGpznWyunGQX7y0l65gAq89swxpXnk2c0qzWFjpJZZSMY8E2cMFY03XWReIjFlnLEkSFlkmkkyi6zp1kThd8RSr/JmAajhEoEqnVZ7c0snenhApTSPLllki1hOI8eM9fRhGMnypOuw9P4uQVcY/xUncCV3nuDAYZWw2iTvcGzEbZIyKzE+e3Y13pLt/4oLz+an934jo+2YxOw0K7zQMUN8fpnkgwqMb25lTmsWNf17L31Y1s6jKy0Pr29nbEyLLZmJxlQ9VhfahGAsqvGxtH8YfTVHksSIBs0uyuHVRGcegp18QhONEBOTTUDihZnIXAzlOM3NKM8ujwtE4u7sCrG8em2DEIEsUZr3/HX6sJoWKvCyyHDYiiRQD/mHkQ0QAgwwWo4JEJsnHUCSJUZGYVujmo/NLqMlz8MTmDv66sgkAh9nI3DIv5qNceyxLEjOdB96D3aAQ0KApGscsSTzXHyDvIGPH+9N0KPVaeW5HNwsqfDy6qR1N0ynyOvhmoY90MtN9Pun5IcrXhiAQR2sJ48o1U2o24Cmwk+8d4KuBiyhwW/jNjbOYXeKheGTM3KDIVOTnsCmYNXrNcEjl+5dORpFkNrYM8amlFXx8UTllPhsGRebaWQV8amk5TrPMlEIXD2/s4JuPbWMgnODcmhzmlnmwmxTah2JoOpw3OZdij+2YjL0LgnB8iC7r09D/vNXAyvrM+HFfKE44kcZhNuCwWZhZeuDY87Ho0sxz28iyFhwwszedVjEYlNGWq89hHpmRrdEdiPHopnYe+MxCkimVsyp8IEkMhhOYFBnzSAA/WjnvCbRJTcMkyxRaTNRGYnTGk0x2WMg+wuxjk1FBQmJnZ4D/eG4P4USamnwXeS4zIWVsjcxhlWG7kRnRFOt6Q8zdnGIACSnbxUXaHnYwnT+91ciKSTkMRZKE42lKfTZunF/A77bvwExmmMCxcZjIJQlq8p3ctricSflOrEaFOWUetrQNs6jKh67rFHls/PGNBuxmhXhK5W+rmvHajFTlOphZksXOzgDBeJptbcMMBqP4jmJp3HGViAAymMUWj4LwXiIgn4bqevdtB7ihxc/uriBZZqjtjaAoBuZXeD5Utq1DiaV1zKZMqkeLUWE4EscgSTgMCj3DEfKz9qX5VDWd9qEY37iwBrNBxmZSWNM0hD+a5KpZRWiaRiCaIpxMYzcf/f+mmq4znFLpTaYoNMiYLGY0Xac2HMcsS4TSKtpRhPnKHAexlMoTWzoxG2R+ecNM6nrDmFWJxHvOndYhETrbS2VPAoOWQkenr09hWd40JqejFLS0YooM8Yb1crZ3BPm3a+dgzKnk0uVTeL01ja6DQ4fB/ijubBvzy/eN5RsURne5yiwlMzAp38WjmzqYVuTGYlSIJNJsaPFTmGUhGM/snvXczh62dQa4eV4RV8wsoCT7JEny0b4FHvwoTFgORQth0mWQU3GiayUIJwURkE9DDX3hzO5JI5OWanuCTM53ctmMIhRFxh9NEI4ncViObeKIdxNRPLW1kxvnl+K2mUcDxHA0iddhJZpMk2UzUeC2Up3rQJGgqT/ClEIXZqNMMJ5mKJzA6zDjtsm4be9vp6GWWJISiwmPURntrpUliStz3PypY4AtwQhVNguFVjPhtIrjINm/9nT6+e5Tu2nsz2weMc9k5skHtpEKpkm1jE2bOVxowdsWg7YY711kNNgHRpOD7oQV2kqhu5MydO78zVssXFpBaSKfZTfZaNk+QJw0BaVHDpqbWv1MyLPz8+tmsLtrmIc2dtAdiDMh18F7OzrSqo7VYsJsMvHKrm6WTczF8gHSjx5T1Uvhs2/Azifg7btg/d+hZB7kT4WaSyCv+sTWTxBOIBGQTzPDkQQ9wX1tOFmCxzd18JOrp43Okk7Gk3i8mfChj2TAOpZjjVfPLABgbdMQU/PtgBGPzYjJIJPZUTjTQv7pc3v40ZVTKPFYiSTSTC1wM6PQTTTxwZfr5JkMGA/SBT+cVvlCSQ67hy1k2yyous6hFlJNzHdxbk0u5fUJNpoTrAgZCK4PHvRcyWEgLcPe2U68/jRdU614YuDtS2MMpLG2RvdN1OjSiQGTTBKhwVa2DI1MgDMrzLp9AtaRSV/v9jC812A4wX1rW/nZtdOpyXexsMrLBVMLWLV6A57gbl7vVIi7y8n1OOjwR8l1mrl3dQsui5EfPL2LO86fQOdwjHRa5bNLyyjJObqsa8dcXjXskqBiKaz4N3AWQONq+NNCuOAXsOQTJ6ZegnCCiUldp5m63hBFWVZMI8FX06Er7CdOw+g5eSPBeCA2QFyNUzdYNxqYjwXzyFju1AIH33p8B794YRf+SOYh4d31xIos8ZXzqslzmkd3cIokUsiyhPN97Oj0Xu2hg2+J6DIYSKkqa0Ix8syZ+v1f5wBrh8P077d2+a3aXr7wwBae29GNKwfKTWZaTWnM7gOfXWMOhYBbwaDB1E0hejwG8usSKEkwOw00z7KQth74K6YmNZJD+5Y8pRMqPnVfAD7YxDh/JMnjmzv47LJKbCYD65qGsBgUJhe4uKXGwPVzyvjjtdXcW7aJc5M7mGfsQ5El7GYDD29sJ89lZlV9P/e808J969q59Z5NdA8d/CHjuJj/STj336FgMhgM8OTngBS88hW4/7OQfO/AgCCc/kRAPs2oqsqUQhdzyrJQZAmv3UR5QQ8eu5s1HWuIJqPEUjF2D+zGYXTQEmghy/IBNiA4Ci6bmd98dDY1BW4qcjLdsdaRYN3WM8jZE3PJcWWycGXZTOS5rZiNygEbJrwfJfaDTxYyyBIJTafUZqEhGqc/nsQATHdYMQDBVKZr/eH1rWg6PPiZszj/smoaVJVKzCQC6QPKjJfbyW7a14XtiKhsm2qmYLUf6ztDTHtqCFPs8AlNVGDHEiebe7tpG4ySUrUDJsYNR5Ps7ApwzawiphRmPscl1T6SaY2/rWrivxvsMPNSmHIuZTd/h9uvWsRdxXu4LPQaHYNDaJpOvtvCnp7QaJktQzFe3t17FJ/oOHFmQ35N5nuLA264FyQz3Pg81D8CD3/hxNVNEE4QEZBPMwsqc/j6hRNpH4qh6zozi91UFvXyk7U/IapGMRqMdEW6mOybnEkHmVVNniNv3OpjNhq4YlbxaKsZYCAUpzTfd5h3fXB2k5G2/iCRWJzuwcCYY1ZZIqqqvD0UwmpQuL0sj7iq0hJLogHtw0G+f1kNpV4bwXiaZTNLSZkhaTp4UI1bZSxDSXRgwyw7+d1Jzn/Wjyl99L0N7Su8VG2NEHohSG1PcDQXOICm6axuGGBN4yDlPhuqvm9oQZIkbGYDty4s586ZMVD3e2Aom4Hlym/wqeWVrF3axX8ZH+YOy9ssTu4Zc+0Xdw+STh+4w9YJ0b0Vzv4uFE2AK/4AQ7tg9T9OdK0E4bgSY8inGUWR+dHTu0ipGtkOMyF5DXb6uOvsu/DH/Px202/56tyvouoqsXQMr/Xw2bnGQ/Y4zPB+l6qq3PXCLgrcVt6s6+eR25eS5ci0mg0GAzoSDkXGPdIKdxuNVCsyFlkhK8tFXU8gs6GGN7NcaKlTQenVOLB9DC0Gjda5Dko7kszeEcWgHiIQS1Dng2kOK1JSJUEal24i2B0nOw22iIZjso0LpmQejHRdZ093iMFIgulFbkLxNKqmU+K10Dkco8CV+W+J15ZpTedMgp2Pga8aiudlrmlzIy28BQtQlYpRlY4z+ZX/Y3etkR9cNweLMZOWc/9EKifUuV/d971sBv9e2H4PDNTDxd8Fk/nE1U0QjpOT5LdROJYqsu3oqEwpW0e36RHK3aXk2fNoD7aTUlMossLuvt1kmbMYjg3jj/uJpA4+9nqsHU1O6vcKpVWSR/G+gUCU7zy0jr2DSRr9KeoGk/zprebR49tDUboTmeVQWwKZpWEGWUJRNTQ9U351rpOp+Y7RlqjbYiYhqZjyx45ra4CeVCnqTFHYkxwNxpYsI/J71iobzQpTgjLJlhiJriR0aSSzdewX52Ax6VQuzeHCW6aQVDN1aG0YoH9lN8sm5GAzGegNxinPziwZK8qyIssSOc79ApS/hR2tlax5pA71jV9AbHjsB2O0gtWDv2wBi0ts/L9H1+EyG9B1iCYOnfv7hNHT8NGn4fOvwcB2uPsS8Hef6FoJwrgTLeTTkNMY5KypGzh36hRybcupcmd2baqwVWD0ZLqOi9xFvNrwKk67k0JnIT7L+HQhv9e7gU7TdUJpdbSlejihtMqwrmNTFLKMCsohxrtfr+3hkR2Z/YHfXYutkZkQ5bGb0HT4RKEPSdPoSyRoC0cpddiwmU2oI5PaZFnGapB5amsnybTGO8EE1xjg0ViYaxQz2kjgNSgSizdFMFoU0lJmu2aTQ6FRT1AqGzJ5NUek4gfpFm7RmHhuNvnZTkwGGbd7ZMMLVWP7Gx10bhumemkuRUUegvEDg6bFqBAbHKZpczf1G8MM9CtIcgnbmgqYtflpFn7uYnCM3SikxK3zg1kpHkt0c+fj27l5QSl9IQtLJ+Qc8d/guFJVqFkGPbWZ1vLES+HJb8Nt/wvKCV62JQjjSLSQT0O3XzCNK2bNZ5JnEkuLllLgyCxDqs6vxi/52d2/G6/Fy9ySufTH+umL9tESaDkuddt/bbDbaCCuqgSPMI5ZaDGRbzaxNxKjNnLonNuNA7EDXnu7boCskbXMQ8kUSV3LjNOmdEodttHZ5fsH+WKfA49FwmJU6AgnqJehTlLZ4cx0XJusBnJKMzPVm7JUHvIm2VAMml1iTzpJKldHMWbKM/kMxIsPrGs4kuL5HV282NjDhvtreWFHJnf2T57dzjMOlZZ5bla/3sqfHtnA+mY/KXVsD0E6pbJ3S5A3H++ms1UnEU0TD6dQ0zqb6ot5+o+7CHZ0jb3oln+AlqRAa2NL2zBuq5Fk+j2d8aoKmgbx4Nhx6eOp5sLMf0PdMP826NgArU/Cm787MfURhONEBOTTUJYlC03TyLMfOFlrWckyUqT4+Yaf0xXu4uzisylzlRFX3//mEh/W+uEww2kN10GScxzMP/uGaYoeejnMu7s37d+APm9yLqmR1qpZllGQMCgKZd5D7xWsKApTC7Pw2Yx89uwq8jRY4bLyupYkmgfJWJre5iDeCVbqs420qSpvhmP8Wouwxajzy0iUF7wq3R5IuhQcpgPTV3bOcyHtDdPcGKRr5zDtL7bx9iNbMTT7mbArjq8xyvC2IOYtcZxqmvvX7tu9K5VK88x/b+OdxzJL2VJOhaRBwl9qpWORh4RVpr1Jx985dlIbEy+Erl1MmLGQb18yCR04d3JBZhhh21Pwwg+hdRW88E3Y+gBse/AI/yLjxDXSYt/7PPgqIHckWcjmv0I0dOj3CcIpTgTk09Tc3LlkmbMOPKDD803PMydvDp2RTrIsWWRbs3EYHXSEOsa9Xrqu83BnPx3hKBPsFvLNR5eJyyhLfLksj43BQ491p0Za2tU5DhRZQpbAazeNLiOan2Un/J7W+LvBuiuWYHhkPXJc1fC5bMwp8/DxRWW8ZtFZkjByR9SGZgSjVUGSJf44MExHMEG5z8b5k3OJp/a1YouSUGCF+lACw9CBXc49do3B2W7szZmudbU5Tt+Qhhqz4DdL2AeSJMNpYv4UplcHadncSmpkaZa/O0pX3fBoWZ2THbx5kQdXW4yc9cO0l1konuiieGrBvguG+6F5Jex9GGXH47y5dguPbGgnllTpeOVv8M/bwL8H9r4A5Uszk8Pm3HpU/zbjZuatkDMRzvosTL4Nor1sWfs52tpeOrH1EoRxIsaQT1O5jly29m0lpaUIJUIsKVoCEvisPs4rPQ+DbKAqq4o/bP0DZsWMy+TCZXJR6ChElo7tc9pwfJjWUCszc2YiSRIT7FaKHftajXFVw3KIvZb3V2w28p2KgkMev315JQ9v6GAgnMBikJFlaUySjaGUSrbJiKrpKCPZvEwGmcFwApdBxm400BSJkUyk8NosDEdiqEkJq8vMgGLA2ZuiVLMTTMfQNR23KuGXZRJpjVf39O2riAqzVRP1HpghGYkdpCt96tYEb51vwuaSWXODl/mvDxOcaKdmdYjGKXbo2tcTkIyr5OyC2i1dVMzIZ/vr7QQm2OkoMePsiJMMpjhvfQAFUFSd/O4ks+Y3odjn7rtg+2aIGsA5GZ+c4P4pu+kOruOr/7mNsz393Fy2BGouzaSvfM/Y8wlTMiPz3+wyuOj7IEloLp36hi/Q1j6PCdVfIy/vrBNbR0E4hkQL+TQ2GB/k229/mzc73mRn/05iqRg9kR7+uO2PSJLEj9b8iHxbPmu61uAwOsgyZxFPH9uua13XSWpJpvmmjb42J8sx+n1U1TDKEk/2+klph1+/K0kSUU2jK54grmpEkmNTbBZ4nfy/y6sJRFPMLfcSiqf5+Uu1BKIpEmmVgUSSvQNheoNxBkMJegMxdnYGiCXTmUlSKZUKmwUpofPQ6hbK3U7i8SSl4STO7iiSLDHUFSE90hK+zGGjJxjHbc208iUVSMMNDivJaJrKGCR6Dv55ylaFiQlQZBMXPz5EaoKLqnWZ7ljvUJqdl3tJKxLN0xyjKT7jwxqv7O6jaesA7voIFRsyXdITa6P/n73zDq+jPPP2Pe30rt6rLcu9F4ptsOmdECAJpEDKpm0qqdtSdvOF9CXZJKSREAJJKKGG3gzG2LhXybZ6l450epv2/TG2bCG5AQYMuq9Ll33OmXnnnZHO/OZ53qcgAclCO6pNoFiAqtifLGsXwNBB8YM/BNPOgGgT0sYfUT60g3x7igExxOAlf+SWyGnsiL5N04sChXD1/1JSegUA2ewr7Nj5fp5fcy5NzT9iYOAZ1P7dkE1BuA2evwXW/BSan4Tk8KFxMkno3gV7noZ9a6w180kmeZswaSG/Q9F1nbMqzuLHr/yY1VWr2Ti4kQJ3AZ944hP0pfp4qeclnu96npn5M/nWad/ib81/w6f4mJ0/+w2dhyAIFLrGW1wHreKnetpZmZ/PpQV+TNNA1619jpQfG1Jk3rernQKbzPemjo+Wuuq0BjrjOj97xkp3yqgGXcMJ6ot95CkSbrsNmyjSOpSkJt+N36kwkM6i6iYum4xpmvz+xXYqU0n++Lc43R4HcwQH6mAGk7EPDEaPxoqAQrdpucbPRaKqT8BIWNvpvUcOinL1ZJjywCGxrnwpMvr/YF8WocuBrJtU7kmSrfOQ9IqUz/JzzzO7KNesflWuuE5lPGUdC9ibLzF3wGRqVStEuyBYBboKf70eFn8KBBO23A4jbQBkxQwXXnI5P32unXV/2kAqNsgtTxfyrctm8L7FlUec+1tJfv4yamr+g+7uv5DL7UNV99PV9X90dcHMvhKK9u+DwhlQOA22HlZYJFhvtX7MxUCyQ8UC6NtmCXTRTKheAVWLoXwRuN6iGt+TvOuZtJDfoUiShCiIXFN/DTevv5lbNt/CJf+4hK5EF5qhce/ee/nZWT+jwlvBzRtu5q97/sovt/4SU3jjalqDZSE/tnf8mt9BF/Ust5fdvfsRRRFJkpAkia7hrjH774snSR8WZXxzQwXXFIeOGJ3tsh0KEjtzSj6NpX7sskRnRkWSRR5u70UzDAZiWQYTOUJ2G1s6I/QkM7QMJejdPYS4PoOwKUk4mkQYmlhY5TyRpTkbX1lVg8cu80gsTUfw0PWTbSJ18/NxBw7kMB9nddKcR8KUBHRA0Eyc+xNMj8DePRHKmgQ66scHiamVLhrDOnanSENlr5WHlT0QANX1Cgy3QekCUFWQFChaTXfDp2msLOSuT5zOXZ9Zxf3nZHi54Gcoux49vom+BdhsToqLLkYQnICPUOg9CEIQgKHq6XDN3fDB+yFxoCyo7AAE69pfewcs/Bi8/1649k7wV4KWgO518OL34S/vgR/WwY+mw19vhJdug9xrb3QyySQnyqSF/A7ng7M/yK7hXbTH20eLXwCktBTfWfcdSj2lmKbJOZXnkNbTuBX3UUY7cfYO7yUjWJZgRsvgkB20RdvQNI3aYC2xnEFFqJIn9z3DGeXLcDgclAXLRvcf0XS2JLN4bTacB0S8wmGjwmGjNZVlMKdSYBsbGHbJ7BL+tr6N/SManz6rftTaFkWRLbEUF9SUMDCSpiLkJJpWGUmpPLG7D7lJpDmcpE/TUQqcqIMqM3pUcgmNeJEdURZxdx9aD5ZyIqrb4Od/2E6H3QQJHsqk+UJxkHRfBi1nUDUvSMkUPy/8dT8c57NOaqoXZ0yjZ4Gfki0xRN1ksCOO7gGxP4M76Bm/k2ogeUyuvMAgtH8TpMKWlVy51LL++jaB3QMX/xxycaLP/ponogE+6lSs62OzI5z+CYLz388Vux7GePkOzIXXIr0N834NI4nDXkAu183MGd9Bkr5HX9/ziLoCwelw90eg7Tm4+NcgaJBLgZaBygXWD8ALv7DE2plnFU6JHXgINHWId8Puu62ftT+G6tVw6fdBObFWoJNMcqJMCvK7gMWli3m4/WFWVa7ilf5XiGajxHNx4rk4l9dfzrTQNJyCk6gaPfZgJ0iVr4qemJUPK2O5hBVToTJUiSiINOQFac1pxMQ6HA6rpOZBEdgaTRDOaQiYox2aDqcjk+X0gJeIqhE4rMBIaZ6PJ246h+f29DKz9FCP4TkeJ4okMpLNUpnnRjVNnIqEIMDmjgibOyIATNEEEO0YmgmtVnDV8HQ38Y4Y1R4JZ0JnZIEfqStDsF/jwnwPOxNxcg6Ii6BmcwgHioWsu7sdm8M6H1EUMI6xTg6QUwSUnIFHUEYrgJmGSbLdehhwDqtoARk5cshyj1Q6adwfI/TSv0K003rzYHDeyq9BKgJls0CxrvG93QW8b3HteMF1epEWXHvMOY5j233g8louX8fJdfl6PJWUlFyGbujEYp3k5dVTWnqWlT99+xVQcw687y8gH0FATROSI3D5rfDUt2DJJ6F7Gzz5FcuCzmuAp75h5WLH22H772D3X+H0L8NZX5h4zEkmeQMQzDey794pQiwWw+/3E41G8fmO3RT+VOeH63/IH3f/kQJnAbIo05u0yhBKgkSBq4DVlaspdBby/mnvx668sUE9TQNNNBQ2kMqkGEwNUhWqwjTNcd2ltoYj1Hhd+GzjWy92pDJUuiwhSWo6IiZOWcYwzdEo6hFVI3icXaI0wyCeVkllNeJZjace3MraphRhl8glkg0UETrHuqnj+Tb6p9rQUzmkgIuSdRFSM30UvGK1MHQEFbR8O1vTCf45nOYrAS9Gz6ExnF6FbFI7PkG2CfTN9eHMmRRsOXaLxFSpg4wsMFdIcEn2KksUV34Nqs8E+bDfZ2wQnr+d+4fyyV9yNqc3TlCx5LUS7Yd9T1kpU6GKscngJ4FsNook2ZHlw+qix4bgno/ARx48/oF+cw7M+gAs/TCkYhAfALsTHvkKFE2HNTdb2wkOqFkJZcvgzE9O1tZ+l/FmacakhfwuIKWmqPRWEs1GGUwPjr6vmzo5PUeBs4Cpoans6tvFvIp5r+tYDzU9hKALrJq6CofswCE52Dm4k1g6xoIyy104UavHOXmBI455UIzB6tikcajaF0BE1VgXSeCVJc4IHrngR08mR6nDhiyKOO0yLeE4f/vjNmoHRZYLDh6IphA0BcVp8uqVQ+9QDlc4x8hsLz2ZLCMhEf/AIcHNjKjYNZOGuS7WxTNoojYaoCGIAmpWxzjOZ19bzkRzS+QOW2IQZQFRFDANE/1V3aSyBTZCW2O4p6TAcMHU86H2LBAPs36H++DJ34LezcWuAaTGDx7XXI4bfxEseP/xbRvugPbnoeMlcJdYZUZnv9dKzbJ5rLGqF8FRGl/Y7RNY4d48uOq2E5t31WpIJ2CwFQpqwOWDTBzO/z7074TTvgpL/wV2/BVmX2XN8dkfw7lfP7HjTDLJcTAZ1PUu4EMzPsQvV/+SO86/g3xHPg7pkMDNLpjNexveSywbe91iDHB+/fnkufLIaZakVeVVMT1/Ov3ZfrYMbBm3/UF39tEwTZOkrmOaJi9GkqR0g12JQ2u5AUXmgoIA9U470ZxKWzKN+qp0FsM8FCOd1g0GcxovPNNOZTdoOYM9jTbmLitG88rkkhMHi0km5G+NM2VrFq+u4O1IoQPDjdZDQDauEdxr8EG7A/EwRTcNEy1nHPcaMoAS0SjcFAHAUeHkbk8GY6GHvwlpZNvYr614oFZ2SUMA7D5Y9NGxYty9Bx7/ESRegZIZSI2roWPT8U/mjaB7C2y5Ex76d/jFfHjsh9C9A/BCJAuPfx+GO8AmwcgA9DWf+DEEwRLlE2HBB8BbALbDHuQcXgiVQ+N5cO43wBeCytOsh4Xy+dDxPHTvPPH5TTLJMZi0kN8FBBwBZElG1VWWlC7h4ZaHD31mD/CHHX+gNdrKirIVuOzjI3hPhGQ2ydLqpZimyUhqhLSeRjd0Ch2FFDmK0HUdSZJoj7RT5iujN95Lqa/0qGMKgoBLFBEEgaV+NzlMQopMTjfIGAZ/6BlCROBfKgrJ6DoOGNeAIqUbOCWRpK7jFEWCikRBq8rIgc99QReFzwyPO/ZEONMGzrS1tiwBckpHFyzBjvdlsIlgGlDqjxIjRCJ64rmuFZstV7VsE/l/kWEuWVTGtRdN55nURvb1p6k+0PwomWdDilvjlw7dDZVLwBk4NFDHFlh/J9QshrxLof5Ma631zSIZha49MHWxtba85UGo/xhk20EfgW2/glnXA7OgfB5E+6BuGRRWvznzyyuHvGuOvV35HOtfmxOWfxHKZpzceU3yrmTSQn4X4Hf4ccpO7LKdD0//MA9f8TDnV59PvjOfpJrkvn33UeGreN1iDGATbTy/73niuTibBzeTTCXpSHSQMlIks0kkScI0TeKZOEk1yaziWejHUZxBEATimkZK10hnc7wUSdCVyeKWJa4qCnFevh9FFOjI5Hgxnh7Tvzip6XRnVUKKjEMUSekGCcOka/ph64+vim2yB2UoBkelE7tfPjCHiefma08hHWb9HvQ0K/F+KvffidNz5EjlptUhotUTX3exVOb3UpLaUi97+xN86o5N7G0aZqp+KFgpXeLA05OhqMaD/6zrYWAPDB6wLqNdEG63RLGwwhJjsFzBJ7sPcqQfdqyBf/4AurdCPAy7HofqpeAQIW+OFVyluCBQDHOvgugILHvfmyfGr5VIL3RsfatnMck7kElBfpcgCiJO2Ul9sJ5STykLihbwninvocZfw+klp/ORGR+hJ35s9/HRSKQT3Lf7PhSXgiRIrO1ey97IXr625mv8cusv0SWdjf0b2TO8h/JAORISNsl23Kk1XlnGJsnYbTam2GW6cyrtqQxlDhtT3Q5GchouSeT8fB8SEM5pRFWNvqxKg9tBUtPJGAYeWSIgS8yOSFz2hXlMP70E5VXPBNkRDfoB0UBf5ub0jzbQfoIxUD22aeimybxHP0eto2XCbWTTxLRP/DXcjYazwIGJyfbOKEprnE/bvOQGDquNLVtPCeVFKXj0Jhhqgj+cD5Fu6OuG7jaYuhJqlp7Y5LffDcMtEO8/sf06d8NTt8Hjv4aNt0LrvdC/3fosOQR2BzSugP13QffLoJlQMMcSuMWXndix3ipmXgFb7n6rZzHJO5BJl/W7gJSaQhEVFElBFq1feYGzgLZYGzNCM1hYtBBZkAk6gq/5GKZpsiOyg/fPswJ77tp5F68MvMKWwS388fw/opkaNb4aMnoGWZSJ5+Lsie5hbsFcNF3DY58gt/bV56EbPBGOcnbQy8yAF8M0aYolSWg6LklEEKDAJrMumsIjCczxujFNEx1rDXlHPEVXVuU9xSHsosC0pSWU1PvZOjiIummCAhAmZNqy+DIC9llOTr94Gi89sIeaEQk1NVbBZZtorRMfhpox2FdyLao7RPkTP6P3gltIJ8ZuU/fUCEdiZkRitl1kezzG1TYP2SGd7GG2f84pIo5Y855Sl4P8m+DBz4Fkg8f/A/BD08Nw1Q+PeW3HEO22xtEyMP0yK0hs9tUTb6vmoLsJ2jZCbAAkGYwklNdDJgCBaTCw2ap+df43YefjEGmF074I+Q0QbbMs+AUXn/TI7DcMlxeWvMFBcZNMwqSF/K7AMA10Y6yALC9fzvsa3sdIdoTZ+bORRImUlhpTPORESGkpFhYuHH19ft35pLU0dsWOIipMDU5FkRS8Ni9O2Umhq5CFRQvZ1L+JfZF9rGlbc8xj2DGpcthxyxLd6RyiINDo9+CRJQSgO50jZ8KZQQ81Tssd7ZQlhnIaP2jtY1HAw9IDdbQFQeDZzi56miPsHk5RuMvqurR/upv9VXa6a500nWZF8sb6Mmx4toNL55Ry2qXT+Ls9hVAi4ci3IQiglNnJBia+brpm0uo+h9YzP8ysZ75BI2uP+5qqKZ3siMoCt51DFa0PMdzoJdCRxptnJ09pAwRLRGU31J0D866A62+DxkuO+5gA9O8ARwBueBzO+x6UThDsl4xA0yvwu4/Ctnss93O6FeadC42rwUhb84g3wbW/PpQTPONcWPghEBQwVKg/C2aefVxibJomw39vJrmhb+wHWhbaXzqxc3y9FE2x/o30HX27SSY5ASYt5HcBHtt461MQBNb3rWd+0XzcNje/3/F7rqm/hqSaxGs7curQkXh1ha/+VD/XT7+eqcGp7ArvosJXAUBfso9idzEAsiizpHjJcbusBUHAHE6Bx0GhXSGr69gP7LsvlSVokwkpMu3pLEFFZljVCCFzWtCDVxLozeQoslt5zoZpEijxsfmJDsIlUA4M59uosFvudsplxL1ZRub7sYkig4qJrhrMLvdz5zfP4vYXWvnBUy1cU+LkrmSEf1f8ZMYlS1mYJnQyD3VFBdVP/4CSC2bTO3Jsj8BBgtkYouwgjGPM+wkMik2oX1gIjXWW6L3vLiieZa3hFtSB/Bq+4lPOhU+vA/uBvwNvEahZSEesghp7XoY9L0KRG/JC4CqATA+ULoKu3TDUAZIOmRws/aRVIewgmQTsfACEFJgJyIRBkcF5bO9MYls/qY39yKGx1wHZDmULJ97pZCOJMNILwSN3IZtkkuNl0kJ+lxDLjC0wIYsyz3U9R12gjrZoGxfVXAQSE4rxa6kdU+2rRjd1MnqGGXkzRi3vPEfeqLXeGe8kmo1a9apH9tEyMvE6K0A8rTIYy9ATzdAzkkISYDinYRgGWU2n3mUnEcnS3Btly8AIQzmVIrtCT8YSyQaPk32pDGldRzVMHh6M0FBbSMF0JxUCRGtcuAodfPiyBt53+VQCUwL0nFNAld+GbfsIF+UFiA6mKXHbyagGcdXkluvnMVhpXa9HjTSScvSvU18qn53n34yz7xXK7F0IIgQDKnbn0ffLGB4i6tjAr75aJyUtGTwhO41nFIK30KrCVXMm9LXBcz977YFbgmCJsWFAy1a4/7/hhTth2+Ow7m7Ycx84M9C1HqJDllVetgRql0HbE7D+2zC8GxQB2psORbmBJewPfxke/hLcfSMM7LRStY6GYRDb24c2kMb2nnK8Z1WM30ZWYP8zsPeJ13bOrxXJDn//BPxgLqz/22T3qEleF5OVut4FlboOMpAaIGAPYJMsK3FNxxoa8xtZ072Gi2ovYjA9SIGzYPTzo6EbOtJhua5ZPYtdOlS96NXVuCKZCFsGt/BE+xNU+aq4pPYSSjwlpNQUnfFOHmt7jGsarqHIXTTh8QzDYEPbCNNKfAiY7OkNUxr0UB70MpLMYZdFhpJZJEHA51SwySJ2WSKqamR0gzybQlxTGdYM7u4bIahIXF0cwjBNok0j/GRrJ+cMS+RNdfOyPcVQs8bLjTIXREy6JTjD4WH44R48IQfFywr52MM7KSx0MqXIw7NNg0zXJC5O2jiub5MApdUO/MYgwaDIuu0eDP3EvoZDDR7ymxLMv6CSZUs0KJwCuYyVlvOXr8IZ10H1nBMak3Qc7G5Ix2D3Otj2V+h6GkI1sOQmWP97CBaAbFiNKwKNlpU70gvX3QaSBP374G8fgfA2uPTX0LwVrv3e2OPsfwGaH7TWpcsWTDgVAPaugZd+TKIXookvgQQO+TbyvnqLVX/61WSiltC78mHJJ6x5vxmko7D3JYi1Qd9O8FXC2V94bd6JSd6WvFmaMWkhv4uIZqOMZEYYyYyQ03K4JBeKpHDrtlsRBREFBZtkI5FLkMgkjjqWZmh0HqyZzHgr+nAxTqpJTExKPaXsi+zjhpk3UOKxXHy6qdMX6+PaadceUYzBagyxqDpENJVlT2+cqrwAAaeDgVgahywgiQKyKPBK+whNfXGymmWVOSURLasRS6v0RZIMZlWyhsHaSAJREPDJMvkNIT63oIx9HVE2/6OTcI/JLFPizhn1lGzOUvpslK6/d5BNaYS7Euz8ews3ebyQVMmolkW0S9YZOTD9g2lSR8QEh99LwawKdnb6jijGil1kauIRlFdFYWe8EvqBrlxlUwJQPM0S45YN0LMPLvzCscU4l7aaLuRSsH897HoB/v5FaN8Gz/4Z1t0McgbKl4N3uuWuDniscpy+WvBUQ/V82PRrqD/DEmOAonq47i44/dsQzcHyG8cfu+4MuOD748X41U8z4V3Q8jQp+/WYqonb9WfyxEfhxZ9NfE4OvxWEtvE2eOLfrdaTbwapOHhDsOiDMOsi6H8JfjAdXvgNaG/SHCZ5RzD5CPcuYkrQCkTpjnbTFG5iJDvCo5sfZWHxQnRTxxAsERMEAdE8+rOaXbZT4T/kOkxkEjg8h9b2UmoK1VDx2/1IgkTQEUTVVVaWrxyN9AZoGW5hedXyCctpvhpRFAi5ZAIuO33RNPleBx6Hwu3r2rlmYQU7umOsnlbEnv4Yqm6wqS9MqdeFKEtsyWSoRGZDxxAfnFLC08Nx7u8fIWuaaIbJJW4b8pl+yltNKJXZ2pdiUUeSkd4ku5YHKO7IUtZ2qDqYOqDxEZ+LRDLHzCVl/Pblbn6TSNMQklid58QVPXIvZIBwT4LIznai6vhe0aPHyBrkHD7yfVl6Bw/lHvdM81C9IYooChTXHSghmY5YN/8X/gzXfvvQIKYJagYig1Yf5GCJlRe8/1k4+xuQGIAtf4WsCYoX2raB3wELPgqls600qm13Q0EF2FfD3ofBEQKbH7b8BZzlVknJphehaiYMNYNhQv1yqDnOym+GDutuhWe/C0WzrHrYatoqpyk7EYVhpPwgAeUlmHcjbL0Tlt8ECIfc8iNtEKy29v1q68QW9MlA18FuswqvZBNQvRIKZkPLM7DrHnjxJ/CBv0H5zDdnPpOc0ky6rN9FLmuwgqp0Q6fMW0ZXvItd4V2cW30uAB2xDip9VmP6bDaL3X78BfRbo61U+6pHhXWiBhKGaZBQE/hsvtFWjH3xPlRdpSIwwbrgBJimSTiRY82+QWaXB8h323mpZYhVjUWIgoBumCiSwL6BBD3xJJV+F2UhDzsSaYycRlAQGZYEbKLAe7buZ4nfwxeri6i1KSQSSbaF4zz/4iCBkIRzZ5rHlzmp6zEIjWijkdivxlms8HyeyrMHWjPOdzpZZVMQuzWrY9TrQLaJ6KoxxniMzvDh3xmjYWkRqz98oGLU5gesLk+Vp4GvAPLLYe8m2P0oRLeDGofG98LAdkinIVgF6X6rb7CcB04nBGphy+1WzrKmQe86mHIBFC2yIq/bHgVBBqfPWq8VbXDeD6FoBpRNG9vI4rXQuR42/xl23AO5BChuBtUrUR3vxRf5BJ4zL4azvgG5JOx+EGxuCNVa6+YPfg7qV0OozmoK8WaRicJT/w8uOswtr2kQ64SWZ2Hb3yERgct/BZWz37x5TfKGMtlcYpKTwsEIZ4B8Zz6RbGT0daWvElVX6Yx3UhuonVBUDxLPxPE6DgsAOw7dEQURn81HOB0mz2nVHA7ag8gnsNYmCAKpnMaCyhCVeS7ueLmd2WV+hhMZCn1ONnZG0AyD7V1RrllUgSKJ2CSR6R4Ha3qHaMgLkctkiZsm7y/JozmZoS+nMstuJ+ZxUd6VofKVKJgwUmhjWrtOQUeG3goHtlk+0hKUvKoDU7pPxQ0oOmjApnSaTek0i/02zjedpIdfe5P7V+c2A2RcIn5g2unFBzcCxWaJQOcWax25KQtdbRDfD0IGetZD4UIYaoOGS2DReyz39NPfg/rTIdEBvRssq7TpbujbCq5iS1RKT4NUn5VzPP8DsOwG2PUo1J4J/S2W9fx6xRigYrH1s+KrmE9+i6R4Deo+G8Gap3Ge8yT4D1RmcYVg2acOnTvAuf9t9TeW3uRbWscrMP3Kse/JMnhLYOFHYMol0LsRXvkNmB+DqklRnuTITFrI7zIL+XDiuThD6SEKXYW4ZBeCIIxarjCxlfvq91VDRTd0Xu59manBqZR4SkbznhXJcrMeHPPV4xmmQSQTIeQMHXOu0XQOt01GlsTROYAl0IZhctfaZga2r+enLX6WTSnkhjNqqM13U5XnIpzK4HbYiGkG2/cPUV7pZ10shSuV4oKaMvyyxHPDMVySRK0k8sxjzQw8OYynwEli8DA3tQhbFnpZtD4+Zm7pMrCZIPWAI6BwZy7OkjwHVTY39GbGFRF5vfQvDDBrUOc9X1mAKIkw0g5DLbDmf8E3E2rmgGBYwU3uAnjuR5BXCwuvB1cA3EEY7oah/aAZVkWu3Q+DbEK8DeIRmPUhaH0Ssr1QdTYs+ywYCfBXQLAcooPQvweq5o1Na3oDMLI6kQf3Y2Z1gldNQbS/BXZDYhBSYShoOHqO9O6noHHV+PezCasfte1AdHzbJnj5V3DNrSdnvpOcVCYt5ElOKjk9h9fmZcvAFmr8VjRqNBvFf6CtXSKXmDB/GcYGbCmigiIqVPurKXAWAJYlLEoiKdUqNKKbOiIirbFWGkINo/uOZEbw2Y7+x22aJuv2DZDvc5HT0pQG7CiShCKJ7B9MUFvgxqHIzKou5vGHdvMpb4iZyxaR57YBJj2RNJ0jKU6vd6HlcogBO/cPRrmiMMDWwRi/3dHGh6dXsmVgmFkFebQIULmyGnl2AQvLQ/zqgSYKX4oQzHPQHpKZ2poZN8dgzkZm0LLUMhGVKwQHdIJK8vh/IYAoCWMCvBxukVzGHPOeZheR4xqzz6qwxBjA5rPWied+DIqnQkmdtQa7/2mrQMd534RsEpID4A5Y+4TKIN4NZhw8xVC5ApZcbVnadh+EW6F6oRWslYpabQnzZlpFQAZD4ArC1DNP6PyOF0EWCV45BUEU0JMqyR39aMMZbCVuHI0hBOlNiEWNdVm50UcTYy0La39guc2LDovo3vMsPPKvsPrfIFBlBa+Vz4TeZVZXq+WfAYf7iMNO8u5l0kJ+F1vIaS1NTs/hkl10J7qp9lePfqYaKoqoHHnnCRhKDeFUnAxnhilwFmCX7Nyxbh957hzlJQbRXJQzys4ArKAvl3L8zSzSOR1RgB3DW+gId3Fpw8VjCop0hFN88af3saz5ThqWncm+0iV0mAE+dVYdNkmkMs/NXzc085hN4huVxeR7bCgIOCWJzbEka4ZGGOjsZ/60Gs4I+QgqEp2ZHEU2hWQ8QzqWpempLp6261StOXK5y9dDUSBJSefTaOWzGJaLENUUyViGEcpGt0nVe7DHVJavqGDuqsqxA+SyYDtB1/FQC/Rut0TZGYSezVA637IQ8yus9VCnD9wn2NbwdZLZO0L8uS6yLVErSOwgkoAgCvivb8AzNf+NPWh0wGq9KErWg8mxiA/Bj+qg8ly44e+H3t/2ADz6TQhVWUFz7/8rFB4Q7Ce+DwO74OIfgP/IAX2TvL2YtJAnOamk1TSRbIT79t1HQ7ABl+yiylc1av0qokJLpIXaQO3oPpF0hIAzQDgZJm+CG3QsF8OluCh2F4+K+XsX1mBXZGK5GMZhbf9ORIwB7LKAKIrIhoMZJY2k1BwuwYEkWoFcoghiWS3d6mp46UkcZV28UnwlAgIht8JfugcRivxMH4iwbf8QVy6sGh27WBExdfi3BVNw+SwPQX86i1sUSWk6glOh09RZ+aGZjOxsYUZpAduesVK+simNbFI9vvzjoyDKAr5IM3M/ey0DN99M4a5dNF38rTFiDBD3SzhaEojSBJbbiYoxQH6t5cbu2wYDHZbw+vKgeMprO5HXianqRB5qIfnyEUpS6iambkL86FHsJ8zm+63iIs98DxpWw/Ivg/MYVuy6W8FRBJe/Kg1r9qVWoFsuDfvXwGNfhamrofEyOPMz8Pz/g7s+AtfdcchjMckkTAryu4a0msZ5IBVkOD3M3uG9uBU3i4oWEc1F6Ux0EhoJ4bP5RnOEDxfjlJpCM62bYEeyY4wgd0Y68Tq8h5pYHGZZ2xXrT6w10sorfa9w4+wbyeQyOGyvKn94DMQD6S3TC6bRER7E4ZeRRIGMqvPojj4Mw+SsaYXc0VPNFbINY2SAs2drFHjtDMazlCkK7Z2dbNyZIlrooqEvzIvNEWaVBWgfjJKIJXE1WJHehmESkCVufmE3pXYZCt1cXFGCQxK5dEYNsiAw9fQSslqS5m3dhIcjdO9Oktn72l2pAlD27O/gQ6dR+cfb2Hf2KgrMQboZawWmczqiAZ7QGxBEdRBXyMrhLZ5t/f8tQh1MMfyXPai9x+HqD5yY9+aoPP1TiLZC86OQ7oOyz08sxqYJG/5gVRdLDYOjGG54DEIT9PMuqoNsGtb9HPY/Aa1r4PFvweW/hzO+AO3vhd9eBB+6DwKTlvIkFpOC/C4hlothYLCmcw0IcOv2Wzm36lzOLDuTeUXzxuQGT4RLcY1atfMKD+WX6rpOS6yFWqmWPHseXYmu0TXpg2wZ2MJzXc/x2XmfBRgjxol0Fo/z+MVFkSVkxY14oKbNjs5+Tq/Lo2Uoya7eGKsXTqG16BNUDO7k46dX4lAkhuIpZhZ6+N2uNNvaR5hSZOfLjzSTG8lyZn0+v9kT5tmmAT64oJaqPDc7WrrwF4S4adlUMskEL3RFKLDJDGSy+BQFmyCQlUBEYOrcUjy2qTw/43n2/s1E3X/cpzIG04TU/DOQy8qsNsHl5eTCXeBoHN0mVukkNKAiiAJB32uP3J6QiRpIvIlk9o4QvmM3ZuYYAXACyGcU4ql7g1zou56G3Q9YkeYX3AzxPqt380i3FWkuyRDrh96t4C2HmZdaqWDxfqice/Sx7U5476/ggv8Gm8fKmRZEa13+zC9aqVt//TB86O+Ta8qTAJNryO+qNeTtg9tZ27MWURA5t/pcepO9PN72OF9e+OXjciFvHdiKIAjMyp8FWOUwg84g8Vwct+zmifYnOLvybAC6E91UeisRRZGmwSYCrsCElbie2N7J3Zt6+MLyMqbVHF/D4UgqR8BlrfHt6B4iowmEXHacNgm7LNI2lCKj6vQ9fz+9/nqqls2gaV+EWx5pwuuQiWc0nLkUeUV55LltbO2KUqVk+MlVM5g/ZxoAOwejDO/bjyfajb+kAqN+GvVuB3v6RygJeXFLIn2JCAVuP7t6etk/FOG5e7ZT2+PDZnPSO9VNXlsKW+7YXy+pykGLkKVumoePX7YQdWCAoR//mIEHHuaVC35ONmW5+rvn+ynbFGXmilLOvHoK4nE25Xi7k24aJnzbzmOmzgl2CcflleTNO8HG1Ecj3G3VKwweWBpofQXKZ1vu65PZDvLRb8A534ZHvgw5Ba74/muvPT7JSWeydOYkbyimaWKX7FT7q/nY7I9R5asilo1hYpJQJy54oRpW2b+cblljfrufW7fdyjMdz5DRMtgP5J46JAd37rmTukAdCHDT8zdx4+M30h5vZ13XOhoKGo5YFvOcWRV8ZFkF6gkEkB0UY4CqPD8Lq/KoLfBQ6HXgdShohsGsMj/GwrNpCvkxgQumhrhqQRmabrJaa+bj4jpKU91s7YoyWwpzbfp5Nv3uh+x92WqPOKPAz9TGOlo2baB2zlxcB9ZsK50i3RmVnqxKuS+EIgi0Rg2eengLU3sewBd8CgDdI9O7wH9c55MzNdaJ4C4uRI9EkH0+HNOnw3WfHxVjXQTjQDnQkC/1jhFjUzWI3L//mGIs+hTcH55CYNYb3FUpr+yQGAPULLQCuk52b+YZV1hW99QLYO9f4e5Pn9zjTXJKMOmyfhfQG+vFITtIqknOqz4PsAS6IdhAla+KoCPIrvAuGkONY1KaBKz/H2w2UeQq4vya8/HZfeimPpoWpUgKCwsXUu4pRxEVblp4EwOpAf7liX/hyilXsrR86YTz0nWDvpE4IxmTudXHv3aZUzW6RjIMJrM4ZIk5FYHRc0pnNQJOG6mcRgb4zJx6tgwNM31qJf95tsG0jX9CVdOk+jo5TW5hpc9PZmSY1IGORA/8+H845+OfZfaq8ygK+KmeMx8Az4FGGi6fn7KcRjyT5W/RJEv9bmYWOujreZp0Mo6aTmJ6IgzLPuyySLzSRabUjr0jja9nfMoUgCct8t2ra5heU0h2qBdaW3HMnYd0WI/okRk+ipsS+PJsTF1+/AFXhmGMrr8fD6ZposazGEkVI5YDScBW6UO2nZxbRXJjH/rwxNflIIJLxn3dFGSHzMD/bcG7tBTP4lO83WHFIis1resVaLzU6lJ15w3W+nLFrLd6dpO8RUwK8ruAEp918wq6giRyCZJqEr/djyzJFNoLUUSFRC5BzsihG/qo+1o11DFry07FSctIC6qusrB44ZhCH+W+chyKtTZc5i2j1FPKaWWnsWNohzWWptM6GGdqSWB0vGha5cGtPSQ1uGD22Gjio9HUG6EvobF8SgGRdI7mkWbcipsyTxmSeKBgiaYypyiI32Wjoz3OBtswt/3pAWpbm0fH0TWV9PDQ+AMctopTONe6Oa6NJJjpgHJfAEUEVRK5tMCPQ5JICR7S8wN4mhQSHd3sa4hS05ymvc6BuyOFtyPF0VZGXS6FmTWFeCSTdG8frtmzyG7eTFva8ipkFYF2m8nCnMGiFS5snvH54fGeEdQNQ5AxUPuS6AkVQRIwMRFMyLt+OkZWx0ioiOUu7CEXpmFimiap/hjmnjjqUIpsWwxjJDtmbNGj4Li0ktDsUnRdR4tlERCwBV9/vehcW+yY2zhXluLM9xD+/U70nhTZ/dHXLsjZjNWpylfw2vZ/I1GcVg5z/WrrZ9pF8MBXoOQHk52i3qVM/tZPMUzdILUnjFToxFFw4hWSTMxR97EkSDhkB2ktjVtxk9NzYyKkNWN8asmq0lV4XB4S2QSewyo0JdQEBsZoP2VBEPjA1A8wkrZydhVZojLPM5r6JIoiAZeNj6yYSkYdXx7yaFQW+LHb0qi6gUORKfDWk9EsK6t9OA2Y5AyJRDxL2p7jrCmFfPbOzRSMpJmiKOjq0Tvw2N2HAmzu63mKc/UsjQV1hGTIGgZ9I2kUu8jWeJpZXicRVeOfoSausFt5wSFPAUmHjcZN8dE1oYMOZh3YPd1FQ2sGJW3g9NmovqiE1FAY+0AXQjRKZv16NvzybjpC7wFg9zQXczfGEWUBqbMJQbCsdkM3SLYNk315kMyuMLyqbragiJgHru3Az7cceBOYF0DYkwDVwNQNy118FJexkVBJ/a0FbVcEdW8UM2n9XUhzgxRdPf2ELPAx46ZU0ruGj7qNtCCEZ0kJ4bv2oHclEf02nGe8Dut4+wNQNOXtIcgA/jKIdcNgM2RiaLMupanpR9TVfRqH442tgDbJ25/JNeRTjPizXey492Xi97eOa3mYTqfH5PoepGO4g6GoZQl6bd7R/Q6uKztlJzPyZ+C1eUfLZh7c9tVUBCoYSY/gto2NCs1z5vFk+5PktBwpNQVAobsQ22EFFhw22eokdeAGLooCdlnC7zyxFBa/U6GpP4FumvidCrG0RjxtWcYPvbibW35+O7c8vQ9BFFkc8DC7Io9ERuWc1PpjinGgqISK6Ydchh+Z8z40WWJPMoOYU1m/5QVGsll0WWJJwMO6SJK94W6mtrjI7LVyk6f3dtBvZolXHLIg006Rruke9sz2gCKipK3fUzqWw/7yTkKJYbT+fgZ+/GNynZ101b4XgHiejcb9GSSgyJdEfPCvZMJhwHo4SzzaQWbb0DgxBkbFeOybwOYIZkqzPjc4rjrkaCa5LeFRMQYwm+PkRtJH2enI6LrOyH37MHNHj6qWylwkNvai745ax0xrOIpeh1AtvBoq3tqI8nGUzoP8ehjYiYmCV/LQ3nEv2mTrxncdkxbyKYSR0ch1xQllHShlHvRoFjlgCejAwACPPfYYAwMD1NfXU1xczLx587DZbFQEK9jeux2fx4dNsqEZGrqp05XowqW4UHUV1VBxyk56kj1Mz7O65WS0DMlMErfdPeqO9jl91Iv142pcy6LM/ML52GQbI8kRNFPD5/AxxzG2L28mm8PpeH05tJlsjns2dfHN+7azfGoBn15Zj88l8bd1z7Mv7ULJpGhofojt2Rlsa5lCW9wko5tsDy5glrGebCwyZjxBEKmeO580MtLsFewaMSg2UkiCgEOxsW/Qzqpqk5HeHtY8tpWiswLM89ZRbhiU2AQefvDnTNmUwwBaaqYyGNIpjakEOjVSxQ76CxVidpizIU6RCM0rQ6RLHDh7Lat+T2+Qis4+Uvc/gB4OMzBskkxYKhkvUCjdk6OyUmd6WRJloIDI3/6G/z3XkRtOYyY0BKeMmT6BQhlvUF6FPDOII+/E03XS0STRR1rRth+54pnoUZDrfEjDOtnm8Oj7nhXliLZ3RkDbKJJiVUeTbSimiX9TG/76GTQ1/Zlp065HerMbZkzyljH5mz6FEGQR/wU12Kv9dD/fjLy+nby55djq/Tyz9WlisRgOh4Ndu3axefNm2tvbufrqqxEEgVJPKTbJRn+yn639W8mZOZaWLsVv95PRMiiigiRKY+pXO2QHdrd9nPh6JmgmYJgGJiaqruKQHOTUHL25Xnw2H091PsVF1Reh6wZbumIsq3997kKH3cZlc0tZ19RKflcXT+/O8J4Fc7l66XLcnpd5SJ2Puf1ekk0bUYqruVs5m/riAI/11rHVE+B9uQfQMocCiQqqaxjqbMewe+jdvJ2Otc/h6tuNmkogiCLnffHf6d7VyfYnHyVgd5LvyiBjsDWWZN/ffo3wYgeGadJeVY83laJ864uo1JILeFg3z0VDn05txLIENy3zMZgPzqkuag8I8nBPimfWS4R8i4lccBWFxZWI+/sZyZMxTXD6bCy4upri2lISZXn0/vT3aENzIPnGNq04Eg8v8dLtkwnmTDwqKLqAYOjsCWb4SCTG1MDxpYGoySyK2056yyCSKWI/q4z0lqFxa9YARlJFz6oYGOgDlhXuOLME55mneDDXkdAykI2BOx/vjMvpXPvf5DesoKPzfvLzluL1HoixiA9bLR8Lao4+3iSnJJOCfAohyCJKoYvM7jCtgWH2pNqZu22Iws0+cqUZBgcHAZg9ezbd3d2Ul1v5mjk9h8dliWihq5ASdwm7hncxnBkm35nPlsEtNAQbCDqC4wqEHKn94uFktSy3bL6F66dfT3eimzv33MlVU64iz5nH2t61nFd9HpIkIUnS6xbjg1wxr5ynNz2O9/F+hPAe/nfYyQ0rpnBG9RxkvRf7Gf/Fsgo3d93zMJ/dvZbLz72OZ/+5gYHuPgRh7ErNQOvBah6D+LpbrXM6+KGuM7hnG73NewhHYlRcezGrp8+iNdzBxsfvY/ipFwCIllbiUnMU9HeRE0SSNQr9M32EMibrKkzOe1klMtvHSKnM4s1ZnI6xVt5Ar8kAdZCC9K4Ie0ttiF6RhUmJMz7WQGl9AACzajbuxZ85ohg7Z+eTaRrBzL5xYl0U1vl+AFIO4MCKhlsSeWbRNCqPs6jLwI5ObLpMYE4JoRXVgOW21otsZO5phwPudcEmYk5xIfaqoJtoWy0r2n9RLWaVg9iOfvLnH1/v7FMKh280mFB0eKhaehN6coSIto/Wtv/F71tFVclyuON6mLIaVn3hLZ7wJCeDSUE+xTBVnVxPkvyokyRpntOtKGZ6wGazMWXKFDweDzU1NZx22mmAJcixXAybZCPfmc+Mghn4nX4i2Qib+jfhkBx4bB76k/0MZ4ZpzGs8ygzG05/qZ0XFCrYNbWNh4ULOqjgLv92P3+5ncfFiVF3FLr2BpR6B4cwwZtZqg5hu243pWMN7dw/ywUVFfOGCORimQTans+yc83iyaSt///bXMQ0D2WaH/FLs7jTZoSPUSz6MyplzyKWSTF9+NjVLV7C9N8HVv9yITXmA1TsHD82nqJSazesA8JfWIIdFQmtG2LsswCVrE9iyBjFRoDRPIhGU0SMaXqwlXMMpIqcPrff2xrMoHjvXzalgysIibE7ra5oaipO4pxUmaucoWoOlt00QNf46Ke/PYq9zkQLsgsAHC318srKI0uMQ40w8xcj6LowXw3g+PoNYyxBS3CDTnyC7ZQgjkhvTPEI5rRBtRwRjOAvRQ9XIUs1hvNNr8FW+uU0u3lQOf/h1hZDCLXiVYqaWXs9g/7PsffbP1FSuQJaOo/HFJKckk4J8CpFpjWLmdHbs28Uz+jbkV6VGVFVUccEFF5DNZmltbR1932PzjHFFi6JIiaeEUk8psiiPpi8VugopcBVY4o3tuOtNx7Ix7t17L5qqsapiFQuKFox2kvp70985r+Y8DIxjtlo8HkzTStUJ2oPEHDlsPi+5WJyStjVcXz5Eb6vKn9f1UllYz+DgIKrhwnnBRxH/9n2SfV1ouSz0tCLmFR/X8QbaW/HmFTB16Rlgk/n4n15BVHu5MTtCasAS5KZlqyhr3n5ojtJcpAOBa1Neioy+37zARf6+DDaXgitr0LrYTzapUZE0SdhFdI+MoJtEhzKsdLtoWFKMfGC9NKvrPP9yJ+kyO86ASGNbhjE29hEC1TdWOljQYbnGTaDdL1AdPb5F5K6Qwv8scrAXGAFmCvCTmZXMyg8ec1/DMIhs7yXzeDeiR8FMaURvb0IfyYABcpGL4EV1xJ7uQBtKgyQgzwqgeO3khg4sJxxoO+lYUkjo4npE5R22dnw4W++CsiWQf5grurABW+vzUHU6RcOwpyiPHeGdNOwawJkZgoJGmHEhTEZjv2OYFORTBNMwGb5jN3ulXp4zLKtY0zQEQcA0TWRZ5oK5K3EodpKJJAsXLhw3RiQTIeAIAIxJbzrolhYEAQHhhIWzMa+RC6suJGCzxs7pOWRRRhRF1vWuwyE7uGbaNa/hrMcjCAKGafBC9wv0uVLIgUJysThqJg37NmHTZvE79z+5NP5prpg3G02L8bnH/sigcibXl29A7W7B7g+SHR44ruNVzpzD+Z/6PG179rD9hef5tLqfTEcz6oFobdVmx6Pl8ISt8XzljSRHSselkRpAqFejvDmFfEA8/e0TRyiHgJIFZWNyIL7Z1MmfXTlwAShMneHgkmGdFU1pQjENxwQxXU83uBjwSqOC/GKxgFtUeGWanWltCWb2W4KXEQEBHDq02WFPpciTtW46AEQoNeDTPolPzp0+puXlkYhv6SfxdOfo2q8RthYA9PChdXt7rZ/0jiFEn0LxJ2dj5DTCD+wlsy+CrdqHHslimibKknxCK2tGI/P1ZI7MrmEM1UAvUnCX+lGc7wCLcdbVY0tnjrRDsApqVsA/b8I28ypqYyH6i7rYILbQ2PEIBet+DA+54PKfQ/40yKuaFOdTnJNay/rSSy9ly5YtDAwMEAwGWb16Nd///vcpLR3fHSUcDjNnzhy6u7sZGRkhEAgccdxsNsuXv/xl7rzzTtLpNKtWreL//u//RtdMj8WpWMs68uB+eje2cK+8HvVAOkRpaSkej4fu7m6WLVvGgvxGhHw7toALUT52RpthGvQl+yj1TNCt5g3ijzv/yNTgVLw2LzPzZ75h46q6yh93/ZHs718i09M/+r4giDiLy1n2qa/jDQTZ1RvjR2sfQnG10r1nNn5VZ7HYS1XnGswJUsQOx19YxJkf+AjtQzFie3fSvu65MZ9nPX70/CJsnS3IuoavsIxk6jIU5cQ6WR2OJ2jn/I/PIq/cjXyYRfhfe7v4XdcQFQ6FRFYFE5yitfSaAWYIEle255jdksJ/YAH8Jyu8vHdXlvLBHM/WiMztMggcyKTZGxBoLpQ4e6/GF8/10idCuQHDQJcokDzgRp7ntvO/U0qZEjx6GdBk5wjJrYNoOyNgmBjRYze/sE8JEHjvVNANRI9Cds8Imq5hK/MSuaMJ9yVVeOusbleZeJr4s53kNocxUwfyoGu96O1xXDdMJVQ3cWnWU5JsChK9kFdnvc4lQctCehji/UTcEq7u/di6NsL+p2CkDRQ3OArgwh9C4zlv6fTfibwj+iGfddZZfOMb36CkpITu7m6+/OUvc9VVV7F27dpx2954442jwUjH4vOf/zwPPvggd911F3l5eXzpS1/i4osvZuPGjcf1BH8qYaRURu7fT3rrIFsLulHjKl6vl2QySTqdZnBwEJvNRtWgn8F4Lw5vAYXyxE/JiVwCm2QbLYUpIFDiLiGrZ+mOd49pt/hGcf306/l/6/8fa3vW8rn5n+Ocqtd3s9B0jUQ2g2pq5Dny6Aw5oOfQ56ZpkOrtoOWJ+5h51Uf41XP70TJ1LPIJiPURmvZWcj9BPlubhn3rx40vKzYal5+FaRjkMhke+d8fYuhjzU8DaF5+PiXte/G3WZW/REmmJpJGdTfT551HKq7jDtipmBZkz7qxa9W6BNIEy8DBEjdXfmk+Ds/4vOypHieGANGMik2A3oMTAWplgX7R5H8rJeKVXr69K8WMbp29CkiaSadPoDZsjooxgCnAgzVO7q6BvUDGgM7RE7TE+H2yxDfwYtsRIzzQh9aTRCp1411ejuhTyLXFUDsTaMMZMtvDo4FZR0L0Koh2GSOrYeYMsImM/K2J3L4ogSvrR6tvZWIppEInmed6MVM6ueEU2Wd7MdOvumhukcJPzkUufYd1SrK7wF536LXNbf24QhCqI6BloKcNSuZA63NQd7aVy7z1LtCTsOdxmHK21alqklOKk/ob+8IXDkUCVlVV8bWvfY3LL78cVVVRlEM3nV/+8pdEIhH+4z/+g3/+859HHTMajfK73/2O22+/ndWrVwPw5z//mYqKCp588knOO++8k3MybwHppmGG79hNykjTEYyyJ94GwNwpM0kMxdg/0oksywTcPqSkiWNxMbI48QOJZmjEc3FKPCWktTR2yY54INpYEiTiavwNn38il8Bj8/Dx2R9nX2Qfg8nBY+90DGRJJqNJbOtMMK9sIVvt92KbGcKNB2N3N4Zu3bR7OzqI/eHnnBeJsl6qI6PaaBopHP2L/12ygc8E9pGOjK0Upak5tj/12FHnkGmYRd3OTSjhQ25vf2ERK//je0Tvf4BtTfvYRQ3JSJZMarwveeP5IQIJmPrcoWMXVnlZfWPjhGIM8NBABN2EMIzLI27RDpXaygdunevBNt3g35+NU5KFZ6fZWLnnkMUakeCry3x06mMFtEKWOCdjUJUwyYvoLGqKkyXC4UlJaneS7NYhTM0YfSAQHNLEYiwcNldJQCl0oZR7ybZEUbsT6ANp9FgOZAEtp2EaJpgmsb/vI7fXKgSihTNjXN0ASokb+5QAvrMrER3vMtERBKvk5pxrrddFs0CyQeE0mP9hCFbCcKtVJ1uXwHbsLm6TvH140/6ah4eHueOOOzjttNPGiPGuXbv49re/zcsvv0xLS8sxx9m4cSOqqnLuueeOvldaWsrMmTNZu3bthIKczWbJZg/dVmKxY9fPfVsgCnQ4hnkstxEOLDdKkkS5mYcihNgc30lhYSFL5y7GJxdgc7qxhSb+AsqiTInHskCcslVB6mAw17bBbbgkFzkth01+49bjDgaS5Tvz+eqir1Llq3rNY6VzOnZZRBAgkdaIZVSe3NKPNK+K0CN9ZAZ7R8UYINO2h0wbdFauYPbsBqRtj3FTqhe1oIZ74+V0OAp51Hk25zvXk+7tOKG5RIvKOc1lxzN3HtufegxJlllx3Q3IoRB5H/kwM+/+B30bdYZHJNpeFfXcutiPf3cMX/Eht5dsl7jgk7NwuI5csawrc3z9j4eAoZwljp9f6aUW2AWYOYOzWjR6bAL/dpZnnBh/NAv/8lhk4vO1gS8HB2OAzdzYfY/Uw1hwyJiqblUR002y+6NkW6OjpTqNtIZc4EQbTJPZMEDyqS6cjaFRMQbGiTECKCuK8M0uec0lO99RlM8/9P+gVbqVUA0MtUD+G+/xmuTkctIF+atf/So///nPSaVSLF26lIceemj0s2w2y/ve9z5+8IMfUFlZeVyC3NfXh81mIxgcG+lZVFREX9/EaSzf+973+Na3vvX6TuQtQHIrCJVu2Ge9FkWRsqISbBHwnlWB/z4/l19yGaUVZeQ645A2MFQDURl7o1INlfv23sfVDVePeb810spAZoAKdwVpPc1LHS+xonbFSTmXukAdL3S9wIz8GQTtQeQTdKfJkoFqgF2W0E2TkaTKtLIq6vQLeLrszxQLZejdbUiBfHYXnUYVMRxqhAopg33zP4gqeRAegPAA73XvhFAJOZsbdeT4grsOkg7mk4pH6dy1HXcgiK+giAv/9SbKpk4b3Sb/PZexvHwTa5/OMNyroh1mPWqFEpouE9pySHTyStzoujEaUf1q1gyEaU6NLZ5xbp6PRDrN2tSRyyvuP/AD8JUpTlZOldgnmuPEGGCXfXy+uQn859leHlEgX5ZYpgmc0ZFm1e6jd2ca3f9V1cMSIuysd+HOGtSFNfwFLvRYFtfcApIvW9/dzJ5h3IuKybZGrejrCSaVuquFzD+7UKYHMAeyKFVebA0BnBX+SZE+yKQYn5KcsCD/13/91zHFbcOGDaNRvjfddBM33ngj7e3tfOtb3+KDH/wgDz30EIIg8PWvf53Gxkauu+661zb7wzi889Cr+frXv84Xv/jF0dexWIyKird/cYG0mWVqfhVVBe8jF03jrc7DUxEk2xLFU17IxRdeRHFxCaZmIAXsCHYJDINXlyhXRIV1ves4r/o8/HY/aS2NU3ZSE6ihSCsip+coc5QhIJDL5bDZ3vioVVmUieaiPNb2GNc0nFjEtWqo7OjpRxa8FPnt1OS72T+Y5LN3bubiWcV0F0yndVhmiXuIweJ5zF15Fi1DKf6+sYtpNo0rog/i17VR12sumYDkXgAOlwxdVlC9PgRNwx6PjptHKpjPjlmLWLjmUSqChQSTGvnFpWPEGKxI8LKlC3jvUlBVlZ1P7GT3S1GGB3WGXQJ5Xhe2lOWuDpa4uegzs3F6Jr7mPfEEP+8ZX2Ly6nwvT40IrE2Nn+dEmMAzps6R2k6txeRPp3m5dm2cgzN5ql7hkQNG+5Cm8yDwYKXC+/NkPvBygjWLvPS7JOb0aThyOv64hmdE49mFHoZcMhFFRjZMHCYMCwbPo5E0TEQkyh1uvh7ycea6KLmuQ/24jZRGasvAxHW4D8OI5si+ZD1M5fZHST7dRbzQiXtxCbaGAEqec1KcJznlOOEo66GhIYaGjl58oLq6GodjfKRpV1cXFRUVrF27lmXLljF37ly2b98+KqSmaWIYBpIk8c1vfnNC4X/66adZtWoVw8PDY6zkOXPmcPnllx+XJXwqRFkP393MUx3ruPyD70XJd5LtiCGHHCAIiC6ZSCRCwB8g2xVDCjoQVNP6/AjEcjF8Nh+GaXD7rtu5csqVeG1eDNNgJDOCqZvke/JP6jnphs6DLQ9yef3lJ7xfe7ibrOomZ0iYhsmfXmrn3s1WAOCMxvuJ9F7LJZHnKc1zoi28hEf2RHil3RKy6UKYi9VNpDv3obu9oKtImfFWnuYPYWQz2DKp0fey/hD9sxbi27WZnWecx7IH/kwwv4Arl61m8Kc/pfyW/8W9bNm4sUzTRI9EEGQZyetly1+fZu1zAgMNbopa0xgZndJ6Pyuvm0aw+MhBSTft6eD23rHr3D5Z5JWl0/nAtlY2xJIA5CkyJXaFHYnX1uzhIL9ozhD1KGwplvmHBLkj3B4kjqjtR8UB1EgihaKMS9X47vPW/M20BqKAvT6AEc+h9iZf0/wFm4SZ07HV+fFeUIWz/OjR4ZNMcjy8baOs8/Pzyc9/bTfug9p/cD33nnvuIZ0+dAPZsGEDN9xwA2vWrKGurm7CMRYsWICiKDzxxBNcfbXlgu3t7WXHjh3cfPPNr2lebze0SJb01kGu/Nq1SG7LXrGVetAzGpGXO3l87wv0JYdYNH8hy2YtQnLbEEQBU9UxNRPROf7XejC3WEAYFeOsnsUu2Qk5QsdVIvO1smtwF/WhegzToDvWjWEYJ2S9SKJEwOshGjXYNxDn8d1D9EbSnCb24M9GaDGn01hicMGF76WhcRrfeWgXq6cX0dQXx65I7ErkMZidy4eqJToLiuicOpsFd/x83HHk6PhWgPboMIG9O2ktrmT6YA8iUDV9Ds758yj9wc24ly1DTyRAlpEOewjV+vqQCwuth8x0mtlXnEHb/hfxDulMO6+CqQuL8QQchxZmJ8A0TbbFxwusgMDWWIrm1KGHirCqMaJqY+KoXgufnnrwHMyjDnSiYlwiiZybMDi9VWN+p3VOWUmgzytRFNHIygKibkLzkRtOHA8Hu0fl9kcZvnUn7hVlSPkO7HV+bJ7Xno42ySRvBidtDXn9+vWsX7+eM844g2AwSEtLC//xH/9BXV0dyw5YFK8W3YOWd2Nj42gecnd3N6tWreJPf/oTixcvxu/3c+ONN/KlL32JvLw8QqEQX/7yl5k1a9Zo1PWpihZO0/zUNvr7+4mVZblQkZCwioLsfn4rW1p3kMll6Qn3UV1dzdwF8xAEyyLIaSrJZBKnbKc3N0itf+I1JEEQcEjWjcku2Qmnw/Sl+piRN+OkndeO8A5u2XoL9YF6FhQt4PmO51lZvfKExkjlUnTmWtgT30VzbpDGniCVbU9QsmwZ752/grNnLyaWzvGzJ5spDTiZWernpW+s4qa/b+WfO/q4uCAGbd3UxIdR3V50SULSjy0rqmKnvXYasijhe/FxHB4vi6+6luyLL2GfMoX0zp1IXi9y0dg8WFM3ECQJM51GDYchnWbBRVV4S4pxemXsx1HMIq4b7EiOF+QrioLc1TtEXNPxA1Esy9MF+IEY4AaOFqpWjZU6lQVCisSweuRrUSIJ9OrHJ/MCcDYS01M6qzclkBUJW1bDlwZNgL8vcDO9xypCcuciD2EFPvhKknvnuShOGhTHDJa0Wg8au8vsRJwGhdgYdIt0yHD1xuPPBjBzOoknDlwFRcQ+LYB9Zh7OKUEU1xtbynWSSd4ITpogO51O7r33Xv7zP/+TZDJJSUkJ559/PnfddRd2+/F/GVRVpampiVTqkBvxJz/5CbIsc/XVV48WBrnttttO+Rzk9p37uXvPYxiGQVGwkFeebGLZhdMxMxrbWnfR3GmF6Ph8Pk477TRkXUAK2FDjWWwOG3aPk76BHsoDExdIieVieGQPmqmhoJDVs3hsHmY4T54YA8wPzefWzbdybtW5LC5ejHSE1KyjoRoqv9jyC8rjfgr7KlggdGKuXML57/s4QW8IAK9DoSIksHxKCf2xHNf99mV29VgR9U5RI5tMkArk0ZFXyPB7P87Ue36PXR3faehwIovOQHB6mPLiY0jA8us+gq+gkGzjNOTiYiSfD1NVEV/1N21mM2iRCJLPh728nNQrr1A2fTqi6/jTUGwC/GtlEZtiKTyySEIz8Moi0112vtI9RBGWpTpLgn7dihy4qLKQIAaZ9g4Gh8LsDhXy8qvqiBcA7RwygG+fVcsVm/eNc0+XSwKn61nmDvYzp7yM5u07SGgaI3Ynwz4/r+QVs920PB0eSeQTSYMztiaoiBw+zqFVesmEKzYm+cschfNbTAa8cM6OJM2VLl72CvxubYq/N9hoX+xFlGHO9gTLuk1ApQ6osgs83eDk7KY0gz6Z3bVOHiuCOVG4et0xhFo1yG4fJrt9mJgk4JgWwjkjD9e8wmN6h3RNJzeYRAk5ke0n1rt7kklOhJMmyLNmzeLpp58+oX1WrlzJq5e0q6urx73ncDi45ZZbuOWWW173PN8uZDtibNuwFUmUMAyD/pEBOnpbWMZ0RJfCmeevRH1UY39nK7FYjIKCApxeD6ZpWlW5DlTmKvQVIh6IYDZNk7SWxqW4aB5sZt3AOq5puGY07emNbvhwJOoL6zkjdA5Vvir64wPUhKpPeIyUmuL8mvMZaN9HaWsXA2SYd855o2IMlvW/tLaEeFbn3+7fwe7eGDZZxO9UaFPdNBaUogoOgtkM0+75w3EdV/L4KHW6sGUy2FwuiorLEUQRR2MjZi6HkUhYwiYIiHY7RiZD9ze/iRGLU/zjHyGLItmWVrRA4ITEWDdNFFHkq7UlqIZJdzaHYcJQTuXnm/fhAoLAHmDogHE7DZOPZyL4vV6G1zyB9+yziZgmP8wkiPj8VAV8nCbBN7tGmKKIBEyDgqCfyzfvQxKgzmGn0VRp2LCOuS8+S83QAGp3N0Xf/z42BZw//v6BoEFwLVlC6uWX6aqbQv5//zfOinJefrCZvOR4SzonWGIsAHYTPrxF5YfLvZy1JUld2OCuKQLTs9bnxYKCFjM4e8/4NeSSrMk/gyL3z3NRPJhh2ZY4c2X4yUov/T6ZopjGkEtif7GNJS1HWUvXTTI7w+Rao+TaY0g+O54zyhAUET2nkR1K4iz1MbKuE7M9RbZpBDOjI4bs+K6qw1ObR7onhuCQcITeYUVJJnlLeZdl1b99sVf6uORDVzL3wR38sf1hFFmBtCWYpmmiNkcIH1bEYjQQTjUQRGH0teiQMXUTQbLec8iH1s2un349giCQUlPYRfub6lG4YuqHSUfSZP0KP93wc84uuY7Z5QF0w6QnkqY86BxnqeQ0g7SqYxomtb6p1AXr2BTcxNfiX2MkO8Jc8YPjjtO+4SV2SBX84cOLWLt/iO6RNJG0SmL9LnKDPdh9Aabu2Q1HWG1VC0rQ7U6EgW7CDbPI2F2UNe8AQaChYTYFdfUYySRGKoWRTCLlFyB7rJuy2tvLjgcfIDbUjyzJDN9xO5WyDcPtIe89V57Q9doXS9Lg9xDXdHTTRBIEsobBz9oHeAqoxHI3i4BdFPm4R+JjJSHy8vPIdXaSbWkhs2072f37+UQmg/eccyj96U/QIhHuUwQKchk6chpGOsKPppUwsms31UtWkuvro+N7D6FUVOI+dxXDv/o12VQSezBI/te/zsgTT6Bv3IjW14frrLOY7nZTNncWr/zmd/xw6gLi1Q6uS5m0OUX2KCIZ02RI03GKAiKgCAKNkkJvLosw180vREgrAh7VZFO1nYbOFEUTiDpY3oD3v5zEcdjHigaffCHOA/O9LGvL8cNZNr6yx7LK+0MKimYSimnsLbQR8cos2n/I02akNCvdShJIru9FsEsIioQWThN1yuP6NAv5duRC66EqO5Ag+WA77surCcx6h/ZonuRNZ1KQ30bI+U4qLp9F42934Kkr5YwzT7c+MKF7UyvmAQERBIHh4WE8Hg/iYbmrI6kRkt0DKGkHRbOtIhwHq3HVBGpGxTiRS+BwOkY7Jx0MsDpa6tjrZU5NEZtaBvDY3Hxu4adp7o/TNpSkOt/NQKyT9gGDuqJKSoKHLA5ZFPDaZfYNJrDbUwxkOij1lFLsLmYkO4LffiiC1jRNfvnAWn6xLseZvp30bn2Fh4fciB4fsiQymJvCh2vTOOMtuEe68ddPpW9f07h5Rsuq0IC010fFzs2kBAH77q0U1tRx1me/QOyxx4g//jj2xkYKPvUp9HgcQ1XRR0aQ8vOpqKml84470DWdkrqpCPPnoVRUIp5gKlmD38NAVqUnq5LVdZyShGaaPDVsueA7AIco8NvpVSwPenHEomCaCDYb2b17cc6eg9rWhu/ii4ncfTfpLVswolEUn49SlwvJ6aSmuxszAKIkYYyMkGxtRfJ6KfvNb5E8bqI7d5J/669x19bSetbZUFxM4yMPk9i3j/C3vk3wkovxrFwJgP/Jx/nOQw9zz6e+xB9dblTTGFO9Kz3aYtHkJT1LhQAPiZAEUK3PPt5go3qGk8+3qsQV2F5sxxQEqlIaO5zwrGByRdbk7D4IRLKU9OdwGFCYgSUtKb4538MlQzker5Z5qcBFfcykJGmwr8ZJWx7cqcCyei95OugqXLY5TVFMA91Ef1XtbTOjI3ptiG4FrS+JUuqGuM7wr3ag1Psw4ypmUiNxxz5yZ8QInFWNzW09QGeGk2iDaZQiN/aA84R+75O8u5kU5LcZctDBlR+6hkcf+SeR5CD+gioEUWBaYS3sz/GksB3TNOnp6aGyspKcniOn5/DYPDhtTvz1U8jlcrRs20Tt7ENVfA5WR0vn0hS4CsZ0eDrIyYy0BphfW8i3H9zJ8voQNQUmFaESUlmN+7e2IFDB3zY3M7vcz0WziigJuBFFgeFEjqlFXsBLFUVEM1FWVqxkWekyFhYf6mgV6e8lM9iHZAo8GnUDbst8PFA4Q1BzhIY2kc5YrkyPe6yrsWnOEoJ2B7ZImKTdQc3uLbTPmI93JExJfQOXfvpLxB98EKWwkJLvfAfzQECYYLcjKgqaboBhkHvueRwGOK64kqIvfB4TS/BOlKZ4ktZ0jn/f30ut08YnKwq5Z+BQBPLZIS8/aijHF4ng1J0IgQDCgQcr14IF9Nz0FUxVJbl2LYGrrsJWW4scCpHu6EBIJpEaGzG9XhSPh9TAAKH3XImu62R27ABdp+1Tn8ZIJHBdfjnuz/0rvgvOx7l0KblUCk99Pe4//ZGRhx/BPPA341i6lIZf38q/ffPzXJ9fyMMf+zRPFpYT1g6Jci3QgrU2nhQEkoctRdUK0GJCm6bz+YqDEfhWEw2cUCBa9bbvtMGdlUClHY/o5BLV4KqNSSrCOkszBtetT/OjVV7+ZXMKWYeYAlO6sywGRsviCGBKIs/McFI+YEdPqVYRHkU81JPYMFF7k2jxHLYqH3okMyra2aFD0e1KqZvcukEGN4ZRSj3oyRx63yF3ueS3IdglpEV5FJx5WGvFSSaZgJPa7entyqmQh/xqUpsH2PzcBp6IbADg+uuvp66uzlpf102Ew7o79SZ6R8tkvt3ojaRQddi2t53TZ1azc2gjiaSdf/vHMFMK/LzUEmb5lHxu+8hiNC1HUoWge+xadzgdJpFLUOW3vAC5bIZIbw872vp4pkPj9l3jA3wuEfZS3fLkmPcCxaUMDfTTPGsB5T2d+AZ7SZdUYJom4YJiPEP9BHs7OW3JCkq37aL43/8NpaJi1NpVe3qQ8/MRbDYrvSkeJ/r44wQuuWRckNeJcmdvmN93DdGSztLgduASRV6IHCqg8cOGCs4xsvDyS+QtX45cUDD6mWmaJF58kegTT+Ksq0OZOweltBStqwt7XR05VcUVCGDqOploFHd+PumuLvTOTkS7A8nvI/bPRxn65S/xnH0Woa9+FVteHj0/+jGBuXPwXXTRuIe3dE8PiR07CMydS9s116L19sLKlbROmcbLoUKebpjFVc8+BpLIvEcewBOLsXv5WQixKNGyCgrbWvj7h/+F9YqTlGGyIhXh+vv/TqykBHdlJRXpOC+Eium3ORh2e9ng8tF1QOtlwVqAUE0oxhL+eh2etIl4BJG/PDw2leqZGS5eLJZYsD+D327Hl9axCQL5wzlCcY2/zbaTb0hE9BzLWzXyj1aYTBYR7RJGWj1iT2r7heUULJ8U41OZN0szJgX5FBBkUzPYdesLPJnZxEgsAlj54O95z3soKigiraZxO92k1TT9qX68Ni95zjy2d21hVvnct3TuRyORSKCZGjvDO3muew2tXWnWbF/Ize9dQKavnbNmV1NQMv7BIpq1qlP57X5aN79CsKSMbDZDU9bNnes7+eeO8SVUvyKvJb1365j3fNNn8WKgiIZ1T2MzDDL+IIOnr2ZJbIiNnV2UdbVw+jXXM7O8BlttLZLXi3Cg0bE6OIicnw+miRaJIHu95Dq7SDz/PJ7LLsMeDLyua9OUzJAnS6zY0IRhmsz0OlkzYglykSLzZGMJjoEBPNOmjRFHwzBQ29oRA370dJqR3/yWxDPP4Jg1k/xPfxp7Xd049/nwmjV4amvpuekrZJuacM6bh72+nuHbbkMpKwNJInTjDfT/538hejxgGDiXLcN72aUowSBKTQ32/HyMXA4jFqP9s/+KbdZMyr72NTJbtjD4u99jW34mf5i5iGeG41z16H0U7d/LlC2bXlVTDlRJJlJVja+jHfuBNqPF3/oWwWuuRguH2bvyLFBVok4X/3PzL1gvHzu3+DoVVu3NMr0zhwRkBLh9qZdHAgJzDZPV+3LMGNDZXOHAi8D83XFE04oP//NUmffs0/AebKRhlzB1A9EmYb+wnMDcUiRZQtd1BBPSbRGSmwbIbR4aDVHwXFqD5FFwTy9AT6ukdg/hnl2I7JiM2D5VmBTkk8ipJshrfv9PNkebGY6OIIoihmFgs9kQBIFptVNpqJ/K9AWzRrePZqN4Fe8pVzrwyaYn+em6h5nj+SCrGgrwh/exYMXKCbc1TZNwVwf71r/EwsuuIh2LsC+c5WeP72VT6wAFNpP9xqE2lJfKLVTtPdTFSRBFcsvPQ3z2nxx0KKuywsd/cAuh0nLCXZ385d++yNxVF3D6Ndch2myjbmoMAz2TQfZ6rXV4w8DUNDp++EPU2TOpOWsViuf4GsXruj4muG4onWFTMssMt4M1kQTPDcd5ZChK9sAa7EVBNz+uysdlmiih0Jix0h0dDHz3u6ReeBGAvI9+lPCttyLY7RR88YsEr71mfHqWadL1+S+Q3rABfXh8YZTR6+VwYE5Q3QwARca9fAWF//Hv2AsLUZNJTMDu8TD8l7/gPvNMMokE7tJSsm43/7N2K1ucbpZsWc+sl16gdclpVGzbzMynHj/i8aft2I4gy7S+92qyzc0oZWUM9vbxwZ/+npgx/hbmkURsojAmv7pcllhsyMzty7BiS4L1tTI/bHDTrxucicBn18WpjY4da7tPwHQKzO63FNmzvIxsSxQ5zwk2geAVUyb8noWfbSO3NYy9xENq2yBKvgvTLuCeX4SazRFYXI6pGeiqji04uc78dudtW6lrkjcXNZ7hlZHdxBJxppXUMyO/jpzL5Imtz5PJZNi6ezu79zexf+deFhfOJG9RBW6Hkz3RPUwvnP5WT/+EWN2wmo07R9igf59zeq5h+rJV47bRVJWh9lYKqmpIxWPMPf9iNu/vZ8GUEsrFNH/45HKat2wil1/D+3/3CvGsFXH7UKqML7jc5FJJFIeDYEkZzekUzF2Cra+LmaWlzDjrAvyFxQDEw4Pk0mn2b9lIqT+PsrNXYXe70eJxzEwG46AgZzIM9Xaz5/mn2dfXysLKcrJ7mlAWLjiuc351pLtLUVCEHA8NRfl5xwDzfa5RMZ4rwS/KAtj845soGIbBwE9+Qur5NSilpRR/67/QhsIAOGbNxH3G6ePF2DAY/Nn/knjsyO0mnfPn47vgAtS+XqL3/QN9eBjR40GQJPSo5akQEPCdew6pTZsQly9HcbtJNzeTKy7GPm8een8/smEgOJ24ZZmv5UZwL52FOqOSnYvmcq/g4rapc1m56gJag3nc8JtbmLZpw5h5tFx2Oe4lSxDsNmruvQcEgZeeeJb4BGJcZZO5nTg/CpRw/0Bk9P0uTacLnXsLBQovDHBRWudru5O8UuvkARt89DQv392e4LSuQ77nwQKJs/drSH4buj+CvTaHc1EF9oKjVyvMW1mNvrCU/p9tBs1E7bPSuKLtCRAF0k/3jLaOlAocOGbkYZsRwuGdFOd3M5MW8tvcQt79wlb++uR9TK2o45yl5xIs8xNtGeSRnc+yf//+MdvO8FbjdLpJuTVmL5nHtGnTjjDq25eWvmF0I4bZ2U2otAK724U3lI+uqUjyWBff5vZhMjmVZVOK0HUdXdeJZA1e3tPFi20JHt7eR/xAKcVlZicL2x7C5Q9gdzppcnhQDYOp8RGqP/dNFvk9+PLzkGSFvUMjtKxbw647fgdASd1UqqbPomDzTlLlJQgzGplz7oVkUyle/sff2HD/3QA4vT50TaOubhoX/vu3j/ucNV1HPiDMG4cjvJLIcUvHAEPq2G5JX68p5nPVxROO0Xfrbxj58Y/xXXoJpd/9Lpqq0vXhD6OUl1PwxS9iKy1FOEz8jWyWnm/+G/HDuq8djnPuXGx1tagdnRR8+UvYKivp/973SL+ykYrf/galrIy+//wvYo8+ivd911rr5rkckXvvw7FyJb7lZ5JrbiYXi+OdPcty9SsKGMaYeQCktu8gUlPLX/e180BKZ2ZWwx7pY1ewkCmRIeauf4G5D/4Dh2q5sD1nn42cl8c/g4V8Y94ZE87/PDT2Od3sTx+98AvAHFFkaV+aXxfaUQT4zIDGBzaleaZQpH7EpMJmUvCFRajbNqGUlGCvOf71YEMziO/oR905gtqXQh88eq1x99nleBcUWxb4JG8bJi3kSQDwFYdYvvh0ajIFYBMRfXYMp4OyklJaW1sxjENP8zvjbXAgnml3WzPLTz+T01acjl05dcoE1haHgBBpfz5O9yG3ryQrZNQMDsVBRtVJpHO8/7fr+chplSybUoQoiuzvjzKSMakszqd5xz6+u0jkt/udbO9LsFzuwFZUQi6boUlx4h4awJiziOSL+ymOR+jp72FHk8DsubNpKMxnrftQSlXv/mZ69zdbL7r2cO4ca3ngyd/+gj0vPje6XToeQ5JlqpYffwvLSCZDdzxJQtMJeD38pjfCPwYi+GSRpX4366JJpjoUVnjsfNgz8dd1eN06Rn78YwA8Zy5HsNkw2ttRu7qtdeNXdTZL9PYitHdMKMaColB405cJvv/9mJqGlkphO+Aaz/vMZ1AKCpCclliU/M9/U/jVryAFAuiJBLLXi2PGDMxcDkGSMLw+PA0N6Lkcanc3sqIgiCJKaSlGNosgywiShGvWTLQnn+TzK1fyhQNr9O3tnWx+4mnCWZWFX/oiIx/7GJWRMAMOF02tbbziDHGPKB8xkOoxZDgOMQbYahhsLbS+I6oJPy2QEask6sIGpa4Mmed+RGrGx/GsOhvFf2LNKkRZxD+3BOaWYJomqY4ImeYRch1xJIeMUuwiO5JGeyWMrcpKpxq8dRuus8rwL5244t4k71wmBfltTll9BWX1FSQiGSRJJJtUyWvI4/Sy09i7fx+9vb0T7icIArl4BlM4NR0gh4vxQTTDshhtkojHoTCnwo8oSmRVHS2ToKbQz2DbCIPdnQTdBp3uOnb0W0LqNDLEohGymoaQV4Q7ESWp5vAVFOFTRKSGacS7enn4N79g2arzaG5rJWB3IGfHr5s+/uv/ZfNjDzHYNr5/t65p9Lfup2b2fJw+3zhr8NUEHA4cksxdHb38onWQzqxlBdY6bLQcEJRLi0J8qaZ4wrS0/tv/zMjNN4MsU/jFL+JZsRxTVRm69TfUPviAFXh2gGwySd83v4lrylQSr6qiJ7pcOOfPp+Czn0GqrLTEUpaxHdYww1FZOWYfQRSRD3Rck71e6z1FQTiQYpfb24zpsOMpKEB5lVV5uPtc0zRcS5aMBswBVFVVUP6R60jv3o3TriDVVAAV+Hp7KVUEZmSGCHb2squ0ip0FxexIjc0jnoiQJCDrJkfrgF0qi0Q0g0KPjbxpMgU+J8LFN9P1r59DVGT8l1xyzOMcCUEQcFcFcVcFx32WOz8DOQMjo5OVNJJNYbyLS0+5OJBJXh+TLuu3ucv6IFufbmffxiHOeO8UBrqHMeU0TTu3sLe3FU3XxljKB2mcMo1rPnDtWzDbk4euaWi5LIJip3kgQX2hF4cikUonUOx2nnrsWeY11rEtrvCHdd2sawmzUG3nEqWZgZZ9tE6fR82uzQCEzzwPZ3SYOaetYsUZS/nNn25DePwfVj5vfSM+RSG6c8sJz9HlC+Bxurn6X2+y0qQmSIHaMDDMr7qHONPr4H/7Y/TkDrmnK+wKd86opDmnU2qTmeufOEAs9qhVpCTx4ovk3XAD+Z/4+FHnlXhpHT2f//zo2u9BlNJSfFdeSeFnPn3C53osjrfYjJ7LkRkawl1aevTxcjlyAwN0ffZfyfvOt8nc/wCBD17PhoEwd6XgHu3I+xZgNeHoBw6XbztWQLQfuL40SJ0icV5RCGlkGEmWUVtaMFIpPGefPZrrfbLRYzniz3aCLOJaXIQSdCJIJ7dOwCRHZtJlPcko8UiKPWv7sLsVRvoTlNXm8+Avt+DJlVPrSNBOHN2WIZc7dJspKChg7sJ5b+Gs33hM00SSZQRRRBRFZpYFRj9zOT0Mx5IsWb6CW5/eQ5HfQcdwiqCe4DxtK72d3WxdvIKZr7wwuo/HplBfV8ucfA9r/vgbKnq7aPzYZ+jesxMqa7lXdFK3eweKcZS7/ASkYhFSsQjrn32SaSUVpN1uKg9UtMoZBk+FY/z7vl6cmDwcSY3Zd7rLzl/n1VNgU6g/0nUwDPq+8x0id94FQMl3v0PgqquOee2SL6wZFWO5oAAtHCZ43QcIvOcqHA1TT+gcj5cjifFBoTZzObLhMPHHH8d/0UXEW9sQNRV1ZATJNPEsXkwmEmHk5h9Q+F//iahp6P39GJEI8Vt/Q/nPfkqquZkl1RVUJ5I80hYhPcHDKcDggX9tQABQsGrHVEkQMWBano/P1lfglCzRjbW0kG1pQfJ68axaddIL5xyOYBcRXTKJdb2kd1pd8AKX1+OcYlnX6aZhxJAde8FkLe13EpOCfArw7B178IScLLigivhQBi1ncMGNs3nkl1tJ9tWx6vIa9OAAzRu7ieuDqEaGG264AafznRUYkhwZxhPKQxRFNE1DFEVS0SipeBRXcT6bt+5GDBTz1L4Rvn5BIx7fBi6IdZDwFtJeXseKoV6qVqyivHEGpVOnESguHb3JVs6cgyAItG/fgt3toXbeQlI//xGplavpfvbJExZlgPVPPMRWlxuH18uU6BA9hfW4Kkp5MJJE1lQEu50VQQfn5PvpT2W4ptBPfeDoT99aOEz4d78n8re/A+BatAjfRRcddZ/09h0M3Hwzua4ulMpK9JERfBdeiP+yS7FVVSG639ybupbJIAoCQ/c/QN7FF2GYJiSTdH/q01T88TbkA3+3hq4jCAL6nj3kOjowEwkEr5feb3wTuaAAOWT18XZNnYqaTtMajpA9ghjP97nYFLMefnIcspBPD7j5Wk0x1S4H+Yo8RnQdRYWYHvcJBXG9UYh2Gd/qKhwLCtH7Uoh2CTFoLR+kd4cJ376Lgk/MIfyPveRdPuVNn98kJ4dJQX6bEwnHCHemmH1WBaZhUDuvAEkWUZM5LrxxKobkIBnJUjF9PrlhO2u37eWTn/zkO06MATyhPAC0XA7D0JEdTh5f9w+WLT6X9V0baZy1gJ09CfYOJPjUHc9zsWMtlbpMeOpS/m3+fEqmNBxx7KHOdjx2J7Gnn6Hi9DMhmWTZaSt5aG8zXUtX4FNV8jY8f8JzzmXSyDYbr/zlNtov+yAxt4/v1ZfgrCvBa7chnYAL1NR1Oj/+CUS3GzkUwkilcMyahXiU37WRSqF2dWKrriLX1oZjzhzsdXXkf+LjCCdYX/uNQj6wLu079xyMTAZbYSGOf/kXIsMjo+vPcKjkqOhwUvnH21DDYXRVpfinP8Hd2Di6nSAI2FwuOpweDMZWabMJAjeU57M/laXeZWdY1UjrJrIAl+d5+VBJiJkB74TztBUWvtGnfsLYgk44LE850zRM+M+7wYDoI62Yqo6pGWMq9U1y6jIpyG9TtJzOk08/SWy3m5rZAbRUGn9hMdKBL97+zhZeen4jF1y6irpaKxVm2epZTFtQhusE2vydSuiaiq6qRAf66d3bxEhfD7VzG4jqKYJKGd978Xs89MJp2MQIpzufpGxfCu2aG/j8eeeNG+vVa5t5xaUgy9QsXIx7zhwQRQobZ/Dx005n+OWX+etAmN5AHmomhZZKUrjxhXFVpibCV1BI5YzZhLs7KSmvYnpVISWuE39YUvsHCN96K2pPD44ZM6xiH//ve9inHN06El0ucu0dRB94EDObxX/xRSj19W+ZGB+OPRAY83rKv31zwu1c8+Za2xcVASAfJsaHc1lJPiMG/LJzYLQgSM40+VXnIIog8LWaYl4cjvFfdaWUOGx4badepSxbtQ+p1IWQNghcVoeGPinG7yAmg7rehkFd6XQa0ZT59a2/or6+ntlyLZ1bm2gtjePxW0/zLS2tZCLgkUOUzfBwwQUX4HAcu4zgqYxhGKNRp7GhATY8cA/+wmK8VRU0u3pRBIWdnd2cWbyU9T/6HzbNWMgtH/0oqBruwNjI1tjQAHtffonyxhmI7Z2k8vMoKShE6+5GLipCHRhAMAxcCxeiR6MIXi+7n3iUdY/8g/5UmmTdNHC6yUWHKd656ajzbli+ivM+9mmUV4nghsceYdF5Fx5132RPD7E770TdtZtMcxP64BBySQmh73ybvDMmzsF9Naauk9m3DwQBR23tmGjmdyJb4ylubumlyiaTNAxswJfqyym2n3oCPBGGZpDdM4xU4cbmf+d5wt6OTAZ1vUuJxWL86le/wuVy4fP5Oe+Cc8lsGuSfnj669/eM214x7LSt8/L71juonV7G+eef/xbM+s3h8BQQX34h0uwaps9ZTtNwE72tw+TCjZTlVHa3rmOX4uDM7lYkQcDuD4wbyx0IEg8P4vB4kOfPw9i0mXRbO1IohOTzWZHRskxm924ERUHMZgk+/Twz+oYx87xEN78EwEhlLfvPuYJAWzOhvTtJVk8hVVVP4XP/HD1WMjxIJpVEsdnQNJWWzRsJd7aT0w0yqSQO18RruIaqEv3d7yCdIb15M0YqRcEXvoC0/EyCR7ASJ0KQJJwNR3bXv9OY43Vxx5y6t3oaJw1RFnHOzOddaEu945kU5LcZTqeTvLw8Ojs7GZFGMHSDHb3N9IbHNkzwenw01s7FTNhRozZmnrmEddueIRFL4vG98yMv01qalQvPpyfeyz3rmtFeascXX8OOgmIWlJbysXMvIplOMrKnicLZs8kkU0R6uxju6aawuhaH10tBVQ1Orw9JUVBHIjjmziW7dy+57m4STzyBY948nLNnY8RiyPn5FH75SxT7fOT/3//xkryHgf5ugh0tBDtayJTXkFi8HKm7HTMRIzxjPoKhE9q9la6d23ji1luonruQtq2baNu0nmVXvZ/lV13LE3/+A+def8OE55jYtInoPx9lykMPEvzA+zFSKewzZ44GPb2RmKaJmdPJpbJoQxlEDVyNeWO2yaWyxF/sQsx3EJxX9obPYZIT482M+p7kzWHSZf02dFmHw2F+/etf43a7kUQZSRLpH+gfs01tdR0LFy1g7RNbEL0ZZs2ezZyZc7E53x3PWBlVY/PmHex9ZT0tfR0MY1AU8PORiy+ldOrE1uOOZ5/E6fNTN38Rpmmiaxrbn36UeeddQuLFF3EtXow2PEyurQ3njJlgGlaCqihgJBJgGIRvuw3/pZcRWbOGzZkYKBLevHxigwN07NhKKhpBR0CtnoKtfR+ieSjq1+ZyWf2EQ3lc+90foWkasqLgD+VNON9cIoEsCCctCtowDEY2dWNsiZBrj1l9glXrnKWgHccZxQhJHaXUQ3Z/hMzeCM6aAIHL6xCkyXXLSd49THZ7Oom83QUZYN++fbS2tvLiiy9O+LmiKAQCAQLOQvZ2dDCvcRaXXXPumzzLN59ULMrel19kyzNP0ZxMEiksIxgZ5Ny581hw0eXj1oqHe7oY6e0hOtBPcd0UCmvqkBWFbCpJLDxI+MWXqFmyFNHlRi7IR08kkX3WOr2eSqF2daGUlSE4nWT37CG3vwXR5cS5YCGpvc3IeXmQn4fD48HQdP745U8T6Z+4ehpAqKyCWavOZ+FFl53U63QsdF1n4M6d6Duix974MASHhJzvxLO8DKXcgy30zgwgnGSSw5lcQ36XU19fT3l5OXv37mVg4FCxv7y8PPx+P93d3ZgJJ0O5Xhw4KKkOvHWTPcn0hmP0t+2n/5UX2PnKOnpLKtEdbkpkmfOqy5lzzsdxuNzYPR50TSWXThPu6kAQJfa8+BxbHnvogFCbzFp1AYsuuYJIfy/9e3ZTcjBK2TTQIxEERUELh0EQMDMZbLW1VrvFcJjEs8/iWriQ1IYN2GprkRUFORhEdDgxNJ3n/vy7o4oxWG7G4e7Ok3/RjkH4mdYTFmMAM6Oj9iQwRrIoMwtOwswmmeTdy6Qgv41xOBx8+MMf5tFHH2Xbtm0ARCIRcrkc2WyWnNCJW/RQWV9AdU31WzvZk4Bpmvz5nkdpe/lxkiL4fX6M0gpW5oWYvfp8SmunIADiYdHl0YEBXrjzj+zbsA7zgLu4uG4qmprD6fGy8OLLsTldFFbVEgwVMtDdgb2mBiOVAtNEdLvRBgcxTBPR6UQbHiHbtAc5GMTR2IgeiRD80IfQ+/tRiouJ3Hknxnnn8s//+zHD3V3HPCctlyW/supkXbJjYhgG/Y82oz8/ePQNBSx3/QSIDhlTFDBSKpLnrU+fmmSSdwqTgvw2x+VyceWVV+JwOFi/fj26rhOPW8UPTNMkm8tgd9oofBsUMXijee723zHw8D/oPf0cZu/ayAe/8Z+4/AGMdBrB4SDZ24u7uJjEcJh9G9bR37qP3S88i36gTR/Asve8j61PPEI6Eeeif70JUZat6FRBoHfvHrwH128FAUQRI5tFys9HiMVQIxEE08S1ZAmDP/whcigP34UXIHs8yB6rvrRn+Qp2vvQi4a4ONElGL67A3t0+7lxEScY0DeZfeDlO34l1DHojGX6shYF1Q+yssNMVUnj/1sTEGx5lIcvWEMA2Pw/JPSnGk0zyRjIpyKcItbW1rF+/ftz7qqqyc+dOVq9ejf8EW8O93Wl6yao7LQ8P0lFcwT9+8B1mrr4AbzCP5mefpHnTegpr6hhsbyWbSo7bv7xxBgU1tTSeuZJ551+Cv7CY3n1NeEIFuPw+ymbPxYxEME0TtacH0elEystD6+sD00SQJARRJLNlC84ZM7A3NMBhqVd6IoFz5gzqBSAY4Jk//YZtc5cxOzqMnBhbMcrQNeoWLmXW2eeg60foGXgSSUYSJO9rJdYSZXuRwpmdWf7sl2grdeBO6xSMqMce5ADZHcNW28PzKnGE3vkR/ZNM8mYxKcinCNOmTeOqq67ioYceIpOxWgJ6vV4URSGVSjHSN4SZ0lHS4KoJviNSIrzT60m/HKNq9xYGV15I77OP0Lu3acw2Xbt3jNtPttkpqquna/dO0vE4eeWV+AutamamYWJ3W9HOTq+PbDaL1tODXFiI6HBgmiZiIECuvQPUHFIggBQMYuZUUBRElwtT1xEkCcnjIbVnD96qalzbtpBfUMTsR+9m4LTVZEMFKJEw5c89Mjqv2EAf4d4eiqtrT+6Fm4D43/ej7Y/x+4UeZg9pSMBFnTl0WaQ9KPNcuY1V+9MEU8d+WDB1E9lnJ/5IG9LFtche+2TU9SSTvAFMfotOIRKJBNOmTRt9XVpSTlFREdlslvseeYBf3vZrfvH337Lt5c1v4SzfOM689FpGaqx6xtlkgqx/fB/ZiXAHg3Tv3glAuKsDQ7fKKJqmSaS/16p97HSS6+pCi0ZHe/jmurowsjkwDJSCfBwzZ6KUlhK+7Y+YmooYCBC5914ye/agDg0R6emmvaOV5IsvUlFYzPkXXUVRSSmlax6l5v7bsRsGHasuRbVZ7RcXXHwFRZXVb/yFOgYjO3vR9sd4uMrORc0ZzmizHujyoxpF4RwLW9JcuT3JhnI7j8/z8vJ0Lwnn2FuDAXQU2dlT7cKQBBK7OhDyo5h6elKMJ5nkDWLSQj6F2L17N+3t1vqkIAgo0UJUzxCCIBAMBuns7CSrZ3nyxWdwijamLp75Fs/49VFRVc/FZ9/Is9JdBPbtIovAwc7CWVlhz7JVVIT76C2pRHT7aXzgdiRFweX1E+0/VEilYrp1HQRBoOD/t3ffYXZU9+H/31NvL9v7rla9S6ggUYVAgKgGTAzYseMSJ3GLS7752XFsYzvO18R2nK8dhzjBDo4xGIPpxnQEAlQQoN5WWq1W2r579/Yyc6f8/lixYpEEAmulXem8nmefR7p35szMubP7uefMOeczYSKqpuMYBvh8OC17KFoWGiBpGsWuTjxTpiB7vUPpAW2b0MXLMdvbQVFRa2qwYjEG2/ahz5uLrWso8xdiJhKsv+dXwwO78uESUoqCYppkpsyiNuCjcf7Ck5ZPF8AyLdI7esk9fpDXylUW9VtU5eyjbisDl7XkAUgFFFrr/fRhI/lVihKEiy4Ng2maa32UnBtB1VW8U6YgHUoAIQjCn04E5HGkoaFhOCBHQ2UMZnrp6t01vKRkbW0tPT09pNNpnnrleRqam/BVHD2TzXjR0DAR2ZaxcUjWNaGqKq7Xx46GScxb+xy6VUT3Bwm//jKljRNIDfTRvXdkt/YLd/0SRdOonjSVwe5OAl4/uq4jKwpOLocT8GMODOAkUxTb2zG27yBw4YVo5UMDviRFwb9wEVpTI65tk0zEqZtwIcVCgWRPN/0H9mPmc8T7e4dHdntScZpffALZdSitrUefv5LQUZbwHA3Fgkl6bReFV3pwMkXeqNKRLKjKvSWFpASSV8XNW0g+FWwHrTaIPVigVJcpNySMtI0UyMPAHlyjE09FkMjsD2Ds2Yu+dIkIxoJwgomAPI7MmDGDl18eGugUTw2QwyEUCpFOp9m/f/+IbYPREF27DjKpYuYpONMTJ1xZRdHKU+XzE929hWIghOX1snjd88PbhFwLJzHIQGLwqGUomsbW55+hp6WFFX/9ecwdO6CpifTTT+OZPBm1pgZJkpAnTED2efHNG8qN7JhD3deeyZPRamvJ9/WRzCTp2LWDsqYJaF4vmfgghUyaSFU1mfjh48sArkPT3LO48R//6U+uh2LeJLO1j5Kz699xO9d1id21A2tfmiLw6GQPy7tNSiUXvP1Q6ECbXoNkZgldsJTC/i4C58zFaN2L4pioldVIPh/aoVH7VjKJ1VeDd8pk4r/9LUpJCZ4pkzETCXyn2SBCQTjVREAeR2pqaggGg2QyQ1NVDAYx0kfftqmhkb5CjIr9A4QnlJ/Eszyx/OEIN3/un7nt//0tZzU2kN3fiZpKjNgmXTDQIyX4cpkRU57e5AuGWXDFNUysqsPq6CCz+iXU6j34Fy3CyWYZ+H8/wdi3j9AlF+NftIhidzd6bS2ubWMPDiKHQhT7+hlMxHBth1kXLscyDfZv2chL9/yKqUvPQ5IkzHzuiGPrXi9GLofnfabELBomqTWdmBv6UWeVHJE28u0kSaJk5USKgwWKZRof9cgo3e3Y3T30//YxNMPA7FSJXn45SjhEyRUXY+zfj3/2bIodHRT27iV8ySUYe/eiVlQgqSpydCjwRq6/HrdYxDPx5A9KE4QzgQjI44gsyzQ1NbF7924s63D3oyRJR2R+Wf3ySwDkdw+y/G+uGdc5UyfUT+QLf/PPfOexf8SsNbm4MJ2QocNgFn8kTHqgm/2Lz8f/+hqIx47Y//LPfInqpmZkw8Bsa0MtK8UzsRkrHqfYfoDUH/+IWyyizJ9HwOcDZ6guZV1HikZxTBMnlyVaUYVrmmi6B5DQPF7AZduqZ45+4pKENxJ938E4H8+QuKcFN2YQvXkq/qlHX/P67TwNYTwNb1ner2IuzJ1L6eWHl1Z1LQvXMADQm5qGViWrr8c7aShLkmfy5OFtlUNracteL5zmKT4F4VQav3+lz0D5fJ7W1tYRwVhRFGbNmsWVV16JcpRnei1SFyjjfwrUrMnzuGnWjXQGYtxRtYpfT3mdgmvSsXM7yd4ews8+Rqyu+Yj9FFUl3t2JJxxG9vux83mM2CAHOw7Q0t7KY2uf4+mzprDh2hVskAz2H2gj/fTTFPv7cW0bORBAkiQ89fV4LAePZVPs7qH17t9QU1bJ0utuOuY5S5LErIsufV/XW0wZSHkHN1Mk+pczjzsYHy9JVYeTVkiShOzzDaWcFAThlBEt5HHE5/NRV1dHa2vr8Gu2bbNt2zbS6TQ333wzO3fu5I033hh+P5FOYhQMvL7x37KJTq7H7Bjqkh4wBsg1zoRDS0crgGQc2WWseby89ocHqWqexN7X1hHv6iR2sJ34y08O9yqEKyq5/G++yL43NjDQ1kZJdR1Wbx9OKkVvIk7ZpEnI8Tiu14NdyGEoElpzE1s3rGX7S88fccw3TV16PnWTp76na0x3DCJnHNyEidIYpOxz8/AEx/9nJwjCuxMBeZw51mpc7e3t9Pb2cuWVVzJx4kSef/55BgcHKRQK5JKZ0yIgTyudhiMNBdEFlQvQ97uYb3k/V1ZNeM+OEfsUshkK2Qz3fOPvjlnuJZ/8DNlknGR/L7meHs79q79hcO16CqYXX00NmtdH1igQDUdo27eXVx++j85dO45ZHkBZfSMTM8e/+pVtWsSf3IfTW8AzIYJ3agme2rGZiUwQhNEhAvI4U1FxOMNOwB8kmzu8FnGhUODBBx8EhlrToVCI6VOnERqjKSbfq33JfSDDgrL5LHlaJd91YMT7xd5OCj4/3qMMrnonD//gn4hUVhHRvZy36FwUVcMoLyFSUUlPawslFZUYmQx33vYZ4l0dKJoGgDcUppBOHVHegiuu5ZwVV1Lo6MB1nHede+wUbfJbBnB6CwQXV6NPi6L6xDrRgnCmEc+Qx5lQ6PC8YlmS8fmOPmAon88TiUS4bOXlaP7T44/7C10vMjFVw9kv+8l39Y54z4yUEDXyHFi87D2X67oOib4eqpqnoCxcQKKnC0VVSfX3UtU8GceyqGqeROHQ+tSax8vEBYv5+I/+g/qZIxdfmbVsBeXBKOnNm9ErKzHi8WMf13GJP7GPvp9uJPN6D77L6/HPrxTBWBDOUKKFPM5UV1czZ84ctm7dSjo71DoL+APk8rkjRlr39/djmibaoRbdeGXYBrc/81MCG7tZvj1Aodg5/J6sqDi2RWLiDMo2rqXKsshHy/Aljhxt/U5C0VIGc2l2rn+Fkppa6qbPoqyugaJpUEincV2HZX/+SSqamgmWlOINhZBlhepJU+nYMbSetqrpRKpr8CZSmOtexVtfj/8YU4RSG3vIv9JNsSODMjtC2QenofvEoCpBOJOJgDzOlJeX09DQwK5duygemnMrywqhQAivFqIvfjhYGYbBvffey6c+9alTdbp/sm2rnuGll/6Ap3uQ/GCcty/8KCsKmteDd38LLReupGPiTBq2rKXyQCulA71HLfNo0vEY6dfWouoePn/nvSjq0JcYVdPJJuN4AgFmLbsEgMHuTlrWr6GntYViPj9chguUd/Yx4ROfQPV6Kfb3k9+5E9+MGSOP1RYj9bs9ACjnllN19bTh1dYEQThziYA8Dp199tnEYjHWr18PQDqTwu/z4+R8R2w7b968k316J0whk2H1Pb8in0qOeL194fnY4ShSNk3zqy9imQbhbJbg6ieYuvoJFKB3yix2L7uKollg+uO/Q3WOvobz21mmwean/8j8y68mn04RiJagqtpwgAYIl1fy0j2/olgoMP28C7n2777Ougd+x5SZ86g953wUWcaxLLJr1uA/66zh/RzHodCbRpc1Qhc1UMwZlF0zFUmSKHSmcPIW/sml73h+ruPg5vPDU5YEQTh9iIA8Tq1YsYJ0Os2OHUOjfXP5HLbnIBX+GpLZGKZpEgqFxnVAbln/yhHB+OAFl2MFw0x64n78cxfy1uFbb21jVu3ZTtWe7RjV9cSWrYRCgZLXX0Y3jXc97gt3/ZLd615h0sKziVTVIElQ/pYsTdn4IIFoCblUgvoZsxnsHWDJ9TdR60oEpk6l0NLC4C//B2tggOgNN2DF46glJeRbBkncvRvXctCaw5R8bDr9q/dhbxik7MPTsUMqmW19Q0FZl5GQsAbyZDb1UuxK4mYsXNPCIkfVX8xDKzuxc5MFQTi1REAepzRNY/ny5cMBORooJ5mLkchqeLQoJn1Mnjx5XD8/7t6z64jXql95BrOmAYDcltfftQxPTwdVPR3v6biu49C1ewddu3cgSTINs+fiDYRomDUHSZKIVFZx9nV/xtM//ynZRJyCPYGakgkoZozCvn1otXWUfOxj6M0TsFMpel7ehqcvinkwjVt0UMq9hK5oIvd8J+aabvRzK0k83465IwGOS0KRkGQJ13KG+sHfRvJ6iD23g9CCGvTSUiTbRq2oODyGoFjEMc2hlcZ0MUBMEMYLEZDHsdLSUsrLyxkYGMCRLFRVRXMNlKBJ2I1QUnJ8+YPHIss0aZg5l22rnqEQCNE18yyaNq9HMw20zvaTdh6u6+CPRCmtqx9eQ7r/wH5e/PUvcHEJVM1i6flzsIo2ml6DmUigBAPodbWY7e0UnQja/gBGZ+JwmQWbwf/eDsWhzFDm6rc967ZdXPsokXh4fwfrDcj0Z3CLSaQgoLYQXTkXvcxLZv2r4POS2bSZ8j+7ES0Sedc1sAVBOPVEQB7HOjo6KCkpYWBgAMs2KRaLeIN5cBVSmQTTp08/1af4vjm2zQu/vgNkBTWbYe/cc6CmgYmP3n1Sz0OSZTKxATp3badt0+vEu7vo2duCY1vUzTyLqQtmUEyl0A8Fvexzz5NOpfBevJxki4mzft/w2tj7SzX213lZuiOD9x0CLoAD9JVq7K/1Esm7lMYNqgZHLjRSPDgys0jabceJOngaKwhOq0OrmExhc5qB11pwkkP7KqVetIYgnpogenMEpdyLooo0ioIwFoiAPI7V1NTg8XjweDw4rkPAEyGTTREORfCZU4hGxm8LWdV1XNdFCVXgU2UueOiX/PpDX6Lkb77HpW88Q7irHbfrAKrjvGtZpqLSs+wKKlu2oncdRD7OAV4ApbX1dOzcRsfObSNeD1U1UFQW4w1oWPmhbmErlUKSoO839xKKTYKBoW17QgobqzQmJ20u2no4iGZ8Ml2lOl0eCU2VKTVdJNPGkSU6fBJTMw4Lt6fRXOiNqKxt9uJ1JRqTFqXxIhKgVvlRS7wYrQkKe+JIuoq9K0/f0wk6oypeRUY3LCqNoWu2urNY3Vny9CLpCtEPTiYwr/K460MQhNEjAvI4pus6N954I+vXr2f16tVYVgGv10sylSBaCWbRQPeMz2fIdrGImc/jkscqnYOvfyMre1t4oWoq6xdcxNYFGtf2tDDt4V8DYEZKydVPILr9jSPK0m0LyypSqKqjf+pc9MF+nGCQmpePkaUJkCSZminTkN+WsCNUUcUFH/0ST95xkGWXDY2gVn0+rEwGxevFM2cOoQ99F9oMkh6Z7WUqQRuu2FsA4EClzkBIJeG6NBVcamImUwtHfql4exbrKsOiJmvhFmUSdT56l/mYEYoCGr7JVSSfbyf3Wjeunsd/QTPtRpzpRRkOSOzwyuyYGKIuZtF8MI96qHHumjbx+1qw+vKEL2pA0sTUK0E4lST37atJnAFSqRSRSIRkMkn4NFhW0jAMtm/fzrp16+nrO/w8sqGhYVzPQX7s326jZd3LSMEKXDlAbY2fnROmoW3fiCUr7F5yMQvvvwMjXELwgktoUX10haIsvfs/0NzDQa5n/lJ2LlzGkvt/jv/QqO148zRSVbU0rVs1vJ0nEKBpwYWovlpyfTsoqS4n0R+j7fU1eEMRAtULUbQ5KITBtbjmi2cRKvFjdnUBEmpJdKjsLdtpby2wJ6ZxXudbV9t+n0p6qPjIOSiBAJKm41pFZE0DVcVOp8E0ye/fjxmPE5g7F1/D0KC3YiqFEgyS2d6JtTvP4NZ+9jX4cUISeQumtWQJG0P1JHkVfEurCC+tw9Xl02Z1N0E4EU5WzBAB+TQIyAC5XI7eg3E6Og/QO9DNntbdLFmyhIsuumjcLjrx1J2/ZNuTDwHgr11KrmvdiPeTjRPZPu8cQgO9zHjtJdSiQa6mgb4Z85EjpYQzSSa0bCZlOThvGQhWNvEsTDvCvmie3smzmPLyk9T6Q8y99MOUV0/AcVzWPNhKvDuL4zjY6m6qaufhFFUu/th0Nj3TRtgZ4LzPXkq+rY1Cayvy1KlEGhsBsNNprN5eBh7oxj32ypnHFgR8QH8HjrmVik9/lMKmTejNzQSWLsW1bcz2A9jJBLLfj1pdjaQoKMHgMYt0TZNCZ5bYH1vh4NBiJpuafSgRFT1uM7XbQPEquHmLwLUTiC6uex8nLginJxGQR9HpGJDfVCgUcF2X9evX88ILL3DNNdewcOHCU31a74tpFHntiXW0bmwhk4xgZv+Ileo77v2dcAlOOoH6lltcVlW85Z+luqkMSU5y3vXNuKpGIFpCIBCgc88gyb4CB7bFKG8M0X8gzcEdg5TWBph1QS25lMmsC2vxHmpBZl57DTuRJHzJxeRaW/HV1Awv2pF5o4vU4+04Weuo5zfMA5htEDBxOt6g8itfwjUMYk+sIzizhvCll2Ls34+xdStKWRlqZSWZ51dR/td/Reqpp+n6+tdp/MUvCCw5e7jIYmcnWt3Rg6qZKWDsT6H7dbTaIPHeFGpAJaDqpN/oIXJR47j9EieMHsexkOUz8ynnyYoZZ2btnsa83qE0ixdccAEHDhzgySefRNd15syZc4rP7L3TPRqLrzyX2RcsZPMLz7Ht5QvQ/HvI92w55j6RyipU3YNVNEn29hyRPUUtvQRV9jJvRQP5ZDWyFkGSJHTNi2M71E0ppW4KzDyvFoD+A2kUVSbZn+fA9kEilb7hYAyg1NTgJJM46TSKZdPzvX+m9vv/FwD/9AqcwSKpZw+ALoHlDrV8dRvMGFJAxQ3J+H0pJEVDnzQdOXohSiRK57/dQelNHyc4pxq3YFLo7SNy1VXIPh+5NzYSuPACkCTsRIKmX/8vWm3t8DkVBwfhUGv5zelOb2adchwHPehFmiiR2h+jzBulrOnw6mAlF0/40z404bSVze4iGJyJJB3+rXIcA8vKk0y+hiz7UJQKotGhHOD5fC8eT4X4cvceiBbyadZCfivHcXjkkUeI96Wpbazk4ouWj6sEBq/+4WGmLz2PWHcfT/7798mn0wSrJmDY03Hza3CNHNahlbeCpWU0zJqLP9qML6TQt7+bwX4TsxBGVtIY8VfxBKLooZu59gtnEak4epaso7Fth779aRRVoqwuiKIO/YFxbJvczp04yRSS66D4fHhnzcK1LAafboGYSrEvh5MpknnuawQWzyd02eX4Fy6gsGMn3vnzKPb2IeFS7Oig2NmFWhLFyWbJHaiEXBC13IfsUyn2ZwmcVYU6IUR+76tUXH81xv79KIEAqCpmLIZe1YBxMEF+z370snIcw0QOBcnt6UF2ZBQtgD49Smh+9ah8XsLpKZ/vor39D3h9YUzjALpeg67XUlo2C49eQSLxGnv2/l9qqq/HxaWx4RPYtsnOnf/IrFk/oLfvDaqrhnrpTDOGYfTh89UD0NP7AvV115zKyzsuooUs/MlkWWbZsmUkB9M0NtbhDBowTgJyLmWy/o/PsPZ3d5GbeRZ6Nke44Wx8XgvSNRT1D1M/p4oLb5pAsr+bSHUjuaSJhEK41MvCKzSS/Xm6c8W/1QAAPClJREFU9iYIRDwUjKsZ6Ohj+qIZ7ykYAyiKTM2kyIjXetpi+GQLHQmlqpL82nX4rriC7Jq1xO6+D7Xqw0OTiQ8Jfuyf8dZn0arKUcrK0OrrsA4cwEkksQZjxO+9l/p/+zdSO/ZQOGBAJgC4WH2HFwfNvNKFt6YGf+NQazi+4wCBuokkn9mCVPTjprqHV/Yq0HVor6G5V3JER78qQmju4WDsui7FVAE9cuQa6IIAkM8fwDSTdHbdg8+nUCh04bomIOHzTcPraURWXPL5Dtr2/wfR6GJKS1aQzrxOMDiJdHo7vb3/SyRcg2n2kkxtIhI+C1n2Issatj1IKnWAcLjxVF/qmCAC8mmutLSU0tKhLkmlevx83PGeLEG/h8GYQTY5SDIShfa1pMqWcMkNC2icVcbONV0c3JljwpyJhMt9lFSMLKOsLkhZ3ZsDnSpgSfMJO7+uPWkkJDyBEkKyF+fZZ/EtORu9qRGDEKRXo4anoDbVoJdXoU71IUcVck/8ESorMftiFDe+jlZTTcnNN+O74EI2rd/DzmKYak+UWeSPelx5v0N8T474qochXUHSaAN0XN75ObXi11DSDuZADjmgkt86gBnLo/l09IsaTli9CKcXr7eeQmGQWbNuY9euvz4UjAFc8vldFIvduG4Ful5FPp+nv/9ZdK2eVLqXhvrLOXjwETyeOtasvQlVzeL3NxPwT0KWh6ZjFgrttLb+PyoqllNdvQJVPbO/HI6fv9DCGaV2ShRP+dkosR6qB2P0zD6PfM7g/IZLmTC3nHCZl/mXNuDa4Amc/LnWCy6bwLqndrDmrh4UVebDf/81vJMm0fHvDxOs+wAAkh9kLYBrZsmu2kdgyWyCF1+P3V3AOlhKYOWNaBGZ3PZ+0s90UdsDStjmjvk6sw4c/bi5196c1lbGiCb4UbSXanRFVeYdKODvzpJ8bB/+7irMAymwXaxYAbPKh5Us4JtTgbc5IpbXFEaQJBlFKUFiJ3Pm/Adr21+gN9NHXfFpNIpYVhJIYhWnAya6Pp3B+Gry+T0MxByy2b1ks3uRZR2Pp5nyskuwD63L4zgWmcxOGuo/SUfnryktXYDj+NH18bug0Z9KPEM+jZ8hj3eO7XDfD9YQLgkR68hi5It85LtL8AWGBq45jgNIyPKpCSKu63LXrS9RSLr85Q/Poeve9dAiowRUQMJOG0eNmSmPjFOuUDLRxm11oEcaXl4TYP2UALZHJlxwQQJLghl7Mnje5TfVATZO9BPzSFSmLCpyDnXx4jG390yOUnL9ZMyDaQq7BnFdcD0S4Usa0cLe4eBsFYoYHSns3jxWXx47buBpjhA8rxZJlXFdF1kRA3dOZ4aRxHVNcrk9vLT5/7CTlaQIcg734H+HuX2SpOC6h1fGUxQ/M2f+CE2N0NHxWxKJDmbN+jtMcwDLTpNMbmTmjB+MGDg2FohpT6NIBOTxwSpatGzoYea59VimzabnDjJtSTWhUu+pPrVhmVSW3n1Z7P5+/C/Gh0ZSH4MLPF+n458ocfaq+6n72lcZfHIj5rZjX48lg+xwxGhxgM6QQqpUp6gpmDIM6HBWp0HVOwTht9IbQ6gVfpDAaE1gxw+npvTNLUcp9ZLf0o+dMEd8YXiTd1oJZmcGJ2/hnVWKd3EVwSkiJeTpZt++3zIw8DBz5vwMn6+C3S3/TlfXf5J3VTZxEx7dh1fJoxd68bi91LmvvWuZ0egSqqquZvfun+LxKDQ0fByAZHITEiGmTv0/eDzlo3xlx08E5FEkAvL4USxaaNrQk5VCpkgqnqWyIXpqT+otTNOkZ1cCnmhFjh/7OW53QGFXRGGJpNBwiR85GCS7eSv5VBh369H3KUjw2mQ/VXmXbRGZRQMWMdklIsvkAV+6SHPq6Otyd5XpxEs92DJYjoMvYzGj+91zQR+PnC6RimjopkNJ0uLN/gnfRbWUrZz0nspyHEdMixmjHMchk9lPZ9cvUZU6pkz57PB78XgH23d8BMMYmdr0oLSQbuYCMnP4PT43ydHIshdJUpEklUBgHtlsL9HobMLhKRQK+3Fsg9raP6ekZGzkcxcBeRSJgCycKK7r0vmrLbA7ddT3t1frxP0yEwYs6k2HXN9T1Nx4EXa4ATelQNImu74HZAml0oc9UOD+RQEu2pmnIvkuC4q8SZeRfCCp9tCgG9uLmxz5a53yyfSUe+jxSjTHihS8CrGATNCWsCwbvyQhWS6OBPGQhg7YEtiOi6xIKIDjgGs5BBzwOGBqMjkNPIbL5ElBJpzbhKpquEUbNBknZ+E6Dq5hD82FLjq4HplCMkV6eyuRpgpCc6eK1JDjVHf3Wvbu/Qpm8cjFehygVVqOQYDZ7h+Ou0xZ9uLxNCJJJdTXXU9Z2QVIEmQyMQKBGvz+0ncvZBSIaU+CMA5IksQOO0fMtVha4WNAlzgYVvArKrYXNqpw0T6DogJWYS/BOTMoFKownu0BB+SQRmBJNerMKKFpFfQ+touLdyYpSR0ZjCWvQnB5PcWuLG7OwnDSZNfcj2/FUiouPBfz4EGSb2xHzs0eThThOi7YLuG8Q/hgnqnAQFilZNBkStfQA24LKKoSvuHu9sJxX78c0vCeVYFvdiVWa5r+h/fg5GxkfSggH0GR0Cr9aKofy5ZJWd2EF9QAUOzqQolGKexuIZeIU758+Xv5KISTrKbmHPyB+2lp+RqG0YYkaRSLg9h2FhkYpJxpvPyeynScAvl8CwB7WzcSGzyf8rJl9Pe/TiAwD6+3jPr6K5Hl0zNlqGghixay8CcyCiaP3r6BUDBCsj/H5IVD6QzPuqyJ9LZe/tjRw5JO8HbnRwQpbWEZZR+YgqoPjRK3siZqYGgVsNRrXZjdWZSghu06aBEvqlcjMKviyBN4C9uySL30ErEf/ojSj3yY3h/8CN8Vf4VWPRu3l+F5yu9Igsh1zdheB7c3h9G6D8ku4hjl4OiolX5c10H2a0iWi2u7FHYNwrvkeD7WsYLn1ZFJtVC+oBm1rJTEgw/R/5OfUPvr/yWyaNF7L1M4Zbq6nmHnrs8ALg7wtPRnXOQ+jJfjG9dwdENfLsvKLqRQ6MJxitTW/BUNDR9EOZSNzTAyeDzHXsv9TyW6rEeRCMjCieY4DnbR4eCOGBPPqgJg4JX9SAcLhC9pJGnYFNr74fleyFkEL6gndEEtSsiDW3ROeOrD7L59GJ2deCorMXfuxNE9DPz6foJzluN6VMgM4J0+k9ymXcjR2ZCQQZbwn11FLrsPvxQjtHw56WeexbUs/IsXUWjzkF1zOJuYDXRV6GQ8Mgm/gg8Z1XVxZAndclFsB8kBxXVxZWmoi9sjYcmgWNDclqX0zdSTigSzXIK+GMbevcj19USv+wCa78yelzoe7W+/C1XVsawMklzCy51lVLEON3cH8nF9I3xnXm8DjpPH75tJefkK6uo+gCR5UJTRm/4oAvIoEgFZGC2WaaGoCpIsUdifQAnoaBV+rJyJI8u0v9FJRamP6PShVrRrOUjq6A5qSu1txentobB3L3ogQHDpUuyBAfLbt9P7T9/De93/hxaZjBnbgM+XIHzN1eA49Hznu1T87RcIX3EFHQ+uRWlVsWMFWss0+v0KqioxpdckknvLwLI3p6C9dVS2Kg21nt/Mw8zQM8atE3zEfDKNA0Wm9JtIHgX1nBK8HCB44QU4hQJa6al5ZiicWG3dLTyxdyeS2ospW2jkCeS2UOu+TCgwFU2LEk+8iqkuZlLVTLp7HsC2MwSDc6msuJRMpo2+/gcBmDvnPtKZNcQHX8Hrq6esbBlezwyi0cmjdv7iGbIgjEOqfvhXyjship0xcUwbJ1kkb5vUzKwi0ZkgbNrIujLqwRggPHkSTJ6EdfbZtN1xB75MhsKevWSeex61tgZ/pIf4vT8BSaL8X/4FtaQEz5QpND/yMLKuYw3k4TWLlpDLYKXGpIzDpMEiSIfnT+tNYYp9OdzKLKobxeosIMkSqDJILljgmkOBu73OS0miyPz9Q6uRvdroxQJ0Xaa48yBln1iCJMvI+uFlXq18fijFpC7yNI9HzTVT+WzNVGw7x8aNXyOZepyk1MBm6dN43DDRdC990rksqF7KtKmLcVyFrq7/YULTd6iqmgvAwYNLsaw0jqOha3OorKpAkmqorlo2fJz29geIJ55F12eTzb5MRfkyGhs/PW6eOYsWsmghC6PMMW1SW3vZvbOPWZdPIVA+tJb2yRxZnO3pwe7pQVM1jL170BsaUKuq0epqGfzlLzH27KHme99D0jSKvX1Yfb34DmUIy28f4OmnWvE4LrMHikiaTPC8OtK7DxCe24wVy5PvjFPo3oKUbUOvuxynmEM2w0iAWxy5Osr2iQFm7cuOeM07oxTfgiiqN4ekaZixGG5NDcGaGjEC+zSTy/ViGDE8nhJse+hLmWEkKC2dPzwFrlhM88bGD2PbRRYveghNO/zoolg0OHDgfiTJB3gxjH5qa5cRiTTT2/sGu3b/DZaVQ9NqqK76BFOnfvhPPmfRQhaE04SsK0TOqmHhhBLUslPzTDRQXU0uGER1XTxTJuOkUkjhMJIkUfaXf0ni978nu24d+pQpKH4/bnFoEI5rmqh1ASY0eSjbkB56zXHRGgNEdIvAkjKym7aQe+0R2NeB5A2SXvd1QjfcBjmHo33dP1pbxWxP4WSLRK5oJtF9gLK50zF27aIwMIAcDGIFg3hDIRTxTHnc8/ur8PurRrwWCo3cRtNCRCIXEIs9ies6b3vPw6RJf37UsquqFlBV9Sq2beG6Fqo6dhYROh4iIAvCSSDJ0ikLxm/y+Hy4qRSu45DPZPCHw8TWv0rp2YsJXXYZfT/8IeYv/4fAeecSueYakjvb0QjiFh0mN1YT35jB0xzBN7OMwdfX4yv24xYKOPk8VE3DE7wMN7MPtmyA4gCSvxI3e+TaoaVemfJPzyHzUidOwUIt95F7oxfzQJr+/9oCEnRvfYNgM5h796LU1BOY2YRUVo5jmmDbyCIwn/Y0tZHmCf+Ergfe876KojIew5voshZd1oJA97PPYjzzKuqUGbhZldA0jYEXduC9eDHqFh920kBvCOGZGCG1qxOsLUQXzyG/cRPemTOQFIXEUwlwSkE1sLrvQ6poQlGXjVhOVIl66FwSoKmo47RkcFIm8rWNRCvCPPLCHvz9ReZ1FHh7J7XkUdCbwvjmlCFJoJb7MZQ84YZqHNNE0jTRtX2ayWQOoOul6ProTWc6XqLLWhCEk6Zy+XL6pEbsF/tRJ/pwZlbjvNCCtEbBKgw955N0hcA5tVjlEgN//x0qr7+C4HnnkdvwGp1///eoFZXoV/0F4YlzMczPEaj3kt13kMIWDySGjqM3hmjaU8Q700+ys4fHJ3ope6WTKxZKrJD9rNfSPDLTz9yYxcRec/j8XMPGaIljtBxKZCBB4II6Mp3dFHvi2LqDYxbRSkOYqQE89T6CTY2oJWdu5qDxLhg883IkixayaCELwrBcdwpvWYDYU62Ym2O4mcMLmXgmRQheUE/srh3ok3spvfYi1LKhZBKFnTsxDxyksGsn9owF2KkiNVcsARdi923CbBnqug6eV0t+5yB7XYvXq3XO6TapS1hDaz+8pXe7rUJna0Tmkg6TaNSLb14FqafaUSv9eJrDZNf3IPtVnJyFUupFkqWh0eBAYEk16fbdyFI79V/83EmrO+H0JVrIgiCcdP6aoT820cuaGWzPYjuF4dXFjNYkWnUAvT6EGugfsZ93xgw806Zhp5JIe7fin9BMdmdyaDEUKcybTeTWLX1srdSI5hRu3JkDQA7puAULpcKL7FUx21M095tMKQ9hLivBq3jwzYkgV6jkNu8iu20HkncinplDrV/Fq+NpjpB6/gByQMNKG0SWzMNK+XEMA9njQRDGg1GdBHnttdfS2NiI1+ulpqaGj370o3R1dR1121gsRn19PZIkkUgk3rHciy66CEmSRvzcfPPNo3AFgnBm0jwacvXQwCnZf+h7uyIhRXTUc6NozQ3Ifj9W/HAuXEmWiV5/Pd4LrsTIVpN5oh1zYwZzd4JXm7w8O8XHQEhhRWueRYcyT0maTHBJNb4lVaj1AfzzDy0N2igjFyTkp7pJP7mfgV/sJvXoQawuDygR3ICD1iBhdr1E3u3AMSyqvnAW5Z+YhX9qhsg5DZReehGucWIyXAnCyTCqAXn58uXcd9997N69mwceeIDW1lZuvPHGo277qU99irlz5x532Z/+9Kfp7u4e/vmv//qvE3XagnDGMrMGxYJJfiCD5FNwctZwC1kJ6fgXVVE6r4miBDgOSiRCfutWjH1tmAcO0PnYBjJP9WO+nsHJWmA5/G5+gNqkxYo9eWZ1jQyQ+rQwhl0g3/8qbkk/Rfqw1DZKljbjmof6sB2wYwWclIkTcyBVAjFIPdSH3TUd+zUFyzxUruOgRKO4rotrGEi6Tvzhh09eBQrCn2BUu6y//OUvD/+7qamJr33ta1x33XUUi0U07fC6o//5n/9JIpHgW9/6Fk888cRxle33+6murj7h5ywIZ7L0jj4KT3bgZi3kiI7pkcmWeigPqPgWVKL5dfpefJHiuvX4gkG806ah1dURX70BY/sgWI3Y+cPZonY1+Vlpy0SzzpGrGNeA4R1ET6awX3oOd9Ys1BVX4K2YTfz+VjZV6hQm+wlKMkgSRQWUoouv6FDfXcD3ZsA2HDJPdGBsTqA3+AldNAHXNJF9PjIvvUT06qtFikdhXDhpz5AHBwe5++67Offcc0cE4x07dvDd736X9evXs2/fvuMu7+677+Y3v/kNVVVVXHHFFdx6662E3j67/BDDMDDe0nWVSh09d60gnOmMV/vIGDavT/BSZriEVZWy5VXotWGi5REAAl4f2p9/hGJXF/ktWxjclkJui0DGz1tHZikRnQlLKvDe337kAiGhIlJVBrc7TcmfXYJy7aUc+PuvY+0q4A4W2FumkffKnLN36DkzMkOLYLtgKhL7673EPDIJr8z8jgI1g0XMtiRmW5LMyz3IAQ29IYShQ/ap1QTrSvHPmyeCsjCmjXpA/upXv8rPfvYzcrkcS5cu5Q9/OJys2jAMbrnlFn74wx/S2Nh43AH5Ix/5CM3NzVRXV7Nt2zb+4R/+gc2bN/PMM88cdfvvf//7fOc73zkh1yMIp6N8b5rs5j7WuA59k31csSuHt8yL5FGI1ETxlQ992Y3v2kX+9dcp8fvQJzQzsH4nbAXnben1bGBDSKLwai8XHGUeRzG+FXVTJU73M3R37qbv/JWkV3yMggnSBD96rMA57W/Jy/yWEdi67TK1PT/88pZmP+vrPSzaX6A+ZYHjokQ9FHbEKL1lGomn28gPyhS79+M7qwK1zIuiifGswtjznqc9ffvb337X4LZhwwYWHcpjOjAwwODgIO3t7XznO98hEonwhz/8AUmS+MpXvkJXVxf33nsvAC+88ALLly8nHo8TjUaP+5xef/11Fi1axOuvv86CBQuOeP9oLeSGhgYx7Uk4o/W/foCKhUNzPfMDGdIPtNLVk6E874AE2ooaqi4ZyqDj2jaZzZsZ/M1vqP27v8OKxciuXUf0xg8S++0Bih0ZAFpKVfqDKlEHmnsM/NZR/rxIgLYHpArSv/v/8N/y7ziGB+3IRb3ek3X1HjQJZnebeCwXJayjN0fIbz48Ijy0vAGt0k9+b5zA0hq8DeL3X3h3Yzb94sDAAAMDA++4zYQJE/B6j1xDtKOjg4aGBtasWcM555zD/Pnz2bp163A3kuu6OI6Doij84z/+43G3al3XxePxcNddd3HTTTe96/ZiHrJwJjOTeYycgdGXoXxePQA9v9mKryqMkyuSXdsNgNoQwP/BZsLVJWRfex07lSR88cXD5RhtbRitraT2SlgTajFNA+ONLCWFd4msGujTu9BCAVKvWyhG2Qm7NgfoLdcxPQqy41LwyCS8CqYCHgcmd+YJp6zh0ayeyVFClzfhqQ+Nme7sQm8vesXQaPM3ky0Ip9aYnYdcXl5OeXn5+zrYm7H/zdbqAw88QD6fH35/w4YNfPKTn+Sll15i0qRJx13u9u3bKRaL1NTUvK/zEoQzidGTQQ5plM+rp1gwSa/txFcfIb+xH9c4nNtY9qjIikt282ayq1dT/tnP4Jgm5v79eKdOxbEsAkuW4F/skN4SJ7cmjt9892auXRzETqbwVC9FMQ6847ZadQBwsRImbsHCMymCkx1K/SjpCmZHeijX8pvnDNQMmEctK6fLdNT56KnwkpIcLMdl7sEU5h3bCC2vJ7CwCvwqinpqU/Xlu3uwDAOlpARXUfD7/af0fISTZ9RW6nr11Vd59dVXOf/88ykpKWHfvn1861vforu7m+3bt+M5ymT9o3VZd3Z2cskll/DrX/+as88+m9bWVu6++26uvPJKysvL2bFjB3/3d3+Hz+djw4YNKMq7/zKJFrJwprJtG7tgoQeGfv/yXSkGf70TN3GUILbQR3H1wxDwo806F79WjdmbwZZyhC5oBN3EtW00fynZF/qwE8bwalnvRNJlXLMd/fxJuHs1in254bzKSqkXt2jj5Cw8k6J4GkNI2lAr0clbBM6ppdiZAUUiu6aLwu74Ox3qXW2v1inIEvVpm1pVIXBuLcHF1UiagqSc2hZzsVhEcV1cWUZRxTPvU2nMtpCPl8/n48EHH+TWW28lm81SU1PDypUruffee48ajI+lWCyye/ducrmh0Za6rvPcc8/xk5/8hEwmQ0NDA1dddRW33nrrcQVjQThT2bZNZk+Mwroe3CoP8tRS/EENucqLa7s46ZEDs3xmAG3aB7EG8rjbbXK8+SxWInV/B7655RS2D+IWhx5hKREd75VNbD8wCH0Gs8pD2PECxd4c3ilRfPMqsAcLOIZN5o0EmV/cRvgvvkjRn8UTCGBICnbcgIOHetJa4kNZskq92Jki4RWNFDsyWCkDvS5I5IpmAmdXk1nXjSRLFPbERwz+Oh6zeoa+iLRU6rxaonDJ1n6Cqw4i+VWCFzcQmFeJrJyabuNiMolpGATq6k7J8YWTT6xlLVrIwhnAcRx6//0NMF2QwajUeC5f5PK2AnLUA+U6TnsWyefiJo/9J8HmUD5jRRruKj5QrtNWqnLplHLUHgNJk/FMCJN4tJXwiiaKfTkKmSzVN8/Czpr0/HQD2Se/Te33voW5r21orvCHPoRSVkriD0/AgkvAUPEUQ1g9OeyYQeCcGvxnVVLsGFqwxDu1lMLuQXBcjLYUbtEm+oHJGHviDN7XMtziHqZK4HXR55dhvhaHozznVhpDPFjicNWWLOqh3fUJYfSzKwjNqzopX/izAzHSr7xMPhSm6aJlw8+QzWyWth/8gGlitsgpMe5byIIgjA2FVA4t4EHyqdipPJV/v5CWtbu59Kk0AE7cwFPlw6htxfU3I1saaqUfoy3Jo1N9TLVkXAlky8FnODT1GGC79AYUXq9QWRC3WdaSw2w5wJsd39nXesCF7O4Bqj4xl46vfZv0c70kV20heNVSar7wEEo0StIwcU2Trq98hdDll6NVV1H5gfOQZJliJkPHV7+OXHkJ4cvPIX7vbgotcbSGIOl0H9JeG6XMg50fRJVKSD3bTskHJpPd2o9TNPDNqcLojGPkBvFP8uEpjaBVVZFqUnH2FSi+kcY1hgKzpMv4J0X5cN7i/mkuDRmbOR0G5v4U5v4U1u4kpTdNG/VBVoHyMrwrV5Lv6wPHAVnGcRz0QICyq68e1WMLp54IyIJwmsvvT5BqS2N35fAuq0H1aFS2SRgAqkTR2kvpnDmwSabQUEefkyIXL7BpoocLO0xKcocHenVU6AyEVAZ1iQN+iSv3H2OtaMtF8soUtTZgLlV/+1fE77sP2ewisnABHBrRHL7kYtRohAOf+kvsRAK1vBxrYABj1y7UqmqiF5xHfuMasvvnUNg7CA4UnT1U1MzHc+EUAFzHQZJlsmvW0PNcgdD51fhqghS7ugjOmgjKFKxEAq2sDElVKZvmxWku0l2xB1+Pn/yrvbimQ3rVQQCuBJ6e4oNqnTmHurQLmweIV3oou2TiKH1Kh6rNMBh46SXs/fsxzzsfdXAQyaPjP+ssyhcvHtVjC6eeCMiCcJormVsLc8G81ED1amQ29WL15VBqvNjVvQT7s3hmzuSJl+M4bXHO2pen3HI5WjZa2XHZV6FTFjdZcbB4lC0O8TnY+a3UrvwQg//7v6SffQ47k8E3by4DPx9ad14tK8UzdSqSrhO+/DJ8Zy0YSuPY2Yl/4UIc0ySzahWhK64gNK2ZhPUwctUk7Fcf58DvfkbDf/8X3unT6fzvV0AFT3mB0mUzyKzbQKD5MtTyciTfUIKM3EsvEf/dfVR86YuoVVXIXi8182fRd/um4TSOb9Lqgly2J0PMP7I17PYUGE2DW7di7t6Nruvol16KVl6OFArR88fH8c2aBYeuRTh9iYAsCKcB27bJtQwixYsUzSJOtY6TKSKlLcqXD7XqdP/QYEolohO+cRJaTQA9sBjXcfjNQ6/QXAwyoSX3jsepy7rUxo6yjQw4eVATOPkOlIYwkaYm8lu2IHl9NP7vr5AOdffaqRRyaOS8X9+8eWRWr0aJRuj9znep+trX8C85G9/8ecTvuovItdegOD3YW7dR851vY2ezGK2txPYaKI0B7M4kuT8+SPnVywmfc/bQdYbDGAcOMHjnr5D9Pqq/8Y94584l/eyzpB59lMqvf53IlQFsN0Jh7SDG3gQoEv4Flfg+Pgvfq53kn+kYOkFFws3bjCZ5YAD/lKm4oSDBpiaS27aR3bKF2r/4C1SRQvKMIAKyIJwGMlv6SP9u7+EXNBmKDnJIY6BMJzKlEkmRKPRkCE4sBcCxLKxYjL6XX2F5pwaDwXc8hhzScbKHp0cFr2ggs3k39CZRPbvxn7OU2M/vw9y/n4Zbfo7W0Ehhx3Yi131gOBgDyIHAiGDs5HL03vYv5Ddvxti9G9+ihRS2byOzahXx++7Dzefp+fZ3KGzfgX/xIpTyCsz2dizLxTchQrC5DLuvD8+f/5jkI48Sufaa4bI9jY1Uf/MbABR278YeGEDWdWr+6Z8o9vVj9/TiNobxX1CDVOtFkRXy6RyhkE5gcRWqpiDJMmp9gPyuwT/pM3onlmUhe310/eAHTP7VnQBEZs8mMnv2qB1TGHtEQBaEcS7ZPkD6/r0jXstILq9P9HJWp0n4njaKlT0EzqvF2DGIu6SIWheg8NIqioEA3vnzSKz/NXrDxUjdHE57+DauYQ9PK/LMLcNTmiG1/UHM1n14Z8/GzefRJ04kcsP1eGfPBllGa2wk25dEsRWyu7ZRcuFisCxkjwdJUSjs3k2xo5PwVVdR/jd/TduNf0b48pUUtm8n9dRTuPk8qCquY2O2tmIPDlLxxS9itLWhTpyEt7YMPRyiMNCPnc8jeXSktySvAYa/DPhmzBg695kzcUwTOeAnuPyi4S8HgWkjFzzyhv14L2zEKdq4EvgnlPypH9UxqapKaOECqr/wBZwzb+KLcIiY9iSmPQnjXMcdb0BrFoCWCo24T0ECFh4ooAByiYfAdRPwN0YwkwUC1UNZm4z+frRIBNeyKHZ2UvQFkPBQXD9IYU8c3+xyCrsGsZMGenMEsz2JHNFxFZfQlbV4/DL2QD96czPm/v0kH32M0CUXo9XXk9vwGpHrryO9s5vMgwdwMkXUKUFcy8ENZyisfZRgUy1a0wQ8kyejN0/A2L6dxO9/T/bVDdhvWZ639uGHyD7yKPlVq9Bqa7FTKQrbttFwx38TvOACXNum79/+jeCnP43U2krPP32P4PnnE1x+Ef4FC3AMA/lQl6/R3o5WX48ESGN03QKRKnLsGbNrWZ8OREAWThf5/jSxH2+iN6rRFpSZ5thUVUYwN8ZABimgUv6ls/AEjlxb/q1SmzYRnj+f7KZNxF9pQ47XwNQA4ckVGP0JSi6ZQtd/30PJZeejBbxYAwO4mQxyaSm5tWsp/fM/J7N6NVZfP56pU5A0Dd+cOaRe7iC7pht78G0DonQJfC6SDEgm+owq7IFWSi45C2dwkJ5//r9Y8Tj6zTejayr5xx/H3N1C+KqrSD/7LM6hFKrln/0s5Z//HNm1a2HWLHyKgp1MUuzoIP7wo9gFBdlbjrdWpuRTn8TJZpEAe3AQfeJEzIMH8UycKAKg8I7EPGRBEN5VMVFgX6lEyiNzjq5RfsscPEEfqaUxtLAHSVPeNRgDhOfPB8AzaTLBXI5MT5Hqi+qwE0n8s5opbN+GP6Lgdndil5eh+HwQLUGvr8OJJ5BUFRyH4IUXoNXWAuCYNoVtMezE26ZGSQwtUGIOpTgGHeOVOCU3LMGWXNTSUqq/+Q06/vaLmL/+NfqyC7G6uqn53vcwWnbjpFKoZ80neNVVFB2H7h//mMrPfQ7LtpF0nb7/vgurP4Ox6QU8s2dRPLgTX/NldP/93+OZOBHvnLlkX3kFz+TJpJ5+ipKbbsYK+Cl7S+IMQTgVRAtZtJCFca6QyFJMGAQaoyds4YpCezv2QAy9vh6tqhIrHgdVRQ2FsDNZrN4eUDXkgB9cFywbSVVAUVBLSym0xPFMjhK7awf+eRUM3rt7RPlqlR87YYxIZqE3hZFregjOm4paUoKTSjHwH7eTWb2a0o9/nPK//iv6/vVfid3xCySvF8njQbnlFqqvvAI7EMTv0ZFLSui6/XZyv70X/ze/QcMVV+A4DrIsE/vlLyn92MdIPfEEXV/9GpVf/SqR669DCYdxXVdkVhKOSbSQBUE4Lt5oAG80cGLLbGqCpiZc0yT52GNIXi+eqVNRQyHQPCRbTBTTwVJ2UXHpsuFVpQrbtpHtj2Nvt4k/shc7VqCw88jRyW7RQasNYLalhl8zY30UVv+Gkkt/Tn7jRvyLFlH7L7cRv/9+Clu2AKBWVxO+9hpSjz6Gf/FiKm+5mf7HH0epqEBduBDdNKm85RYKV16JWxhqmbvpNG44jFJSSuzOX6GWlhC85GLUinIKiQSBcFgEY2FMEAFZEISjyvX3oylBCge7KcohKuecg7EvSfrlToqtCSKfmYssV2AnbWRPETkcRg41kX2kFSd29BSIb7IHC4efK+sy6Ue+BEaGhl/8Atdx8EyePDzoKnrjjXRv3szgXb9B8npQKypQIhGqv/kNtPJyKm64ATcWQw8EcDWNouuiRKPIqoplWTiJBOlnnqHQ0kL8t/eiRqMEL74Y38UXo3m94vmxMGaIr4WCIByVi4fMaz14Z66kZOFy+v9jM/3/vYXCjhiuYZN7pZv8jjSD97eQeraP5JP70SeUoFccez6zHNQo+9hM9KbD3X6WuQ+MDAD5N94YmvdbXj48fclOJCi5+WYKu3bR96N/xTN5CiUf+Qh6YyN2IoGu61BZieUdelYerKggeccdqB4PiqKgNjQQvfFGCjt2gOviP2cp1d++Fd3nE8FYGFNEC1kQhKMKVIRxJxdJPbwPp+/IZSOteIFib5biwTTFg0OJKrJru9EnHPsZm2dSlNhvdoxIk6hV1KN+4hvgajiLp6AEDne/W4ODuJaFWyzimTIFOxYjfvfdVH/rmwBIHi+y349u2yiKwptDYkpvuAFJUZAkiUImg0eWkf1+Sj70Z1R985siEAtjkhjUJQZ1CQIAVnFoPefBZ/Zhb02AIuHoEm5XfnibHbUe2ko1PJpEQ8xm8sEcynH+BdGbwhS7s6ilXoo9WbSaAKGLG3HSJp5JEdQKP5I8FCiNzh56v/l1zAMH0SdMoP72/8DJZFBKSuj//e+RHQe3fwDP2YsJLFxIYsMGQgsWDLWWGVr5yjRNsCz84TDZlj2k1q+j4uqrUUtGb4EP4fQk5iGPIhGQBeFImb4kiW0H8JeVkvvtvqGcxy4jcgt3hRRq00Mjo7MemfZqD7v8Eh/YmeNoy2xIHmXESGoAz+QoyBKexhCSrpB7ow9kKL1lOlqFn8KeOFYqTrKzE9WMU/nBa5AkieyrrxI4+2xc18VJpVAiEYqGgfa2dZ5t20aSJHKpFLZtowzEkEui+CsrT3CNCWcKMcpaEISTKlgZwXvBDHr+eGiKkn04EEuajGu7w8EYIGA4zGzPU69L3DPLxw17CgTMw/vIEQ/WBxrQVvViH+rSVsq8lFw3mezGPlIvHATr8Pb5zf0UfCrFrixabYCAVIs0aRKSJGH29qJWVeEWiyQf+wPx++5jwj13DwfjN6c2ASiHBoMFo1GKxSKOx4Mn+M7rdAvCWCACsiAIw1RNJbKolny/jbk3iX9xFWZfFsmBYmfmqPuETZebd+TZ0+ijqEhMqPWR7zF5NQrXxA1CC6tIHArIdqxA6vkDFPbERwRjgNTzB4cWDZnvwmvt4GtG3uPim1pC3jTRAwGSTz5J9ze/CbZNYcsWfIcWNDnWtCVN0+Bta1sLwlglArIgCCOE6krwfSxItj1OZEol+WQORVNI7O2FVxMUOzK4hZHd0JoL8wyJYl8O3VYJnlPLjKKDsS9JPjsykOe3DeA6DAXfN2OyIiGFXaI3TUP1uUjOZBL3/JbiYAynvZTQ9On0/csPSD7yCNg2kt+HZ9q0k1IfgnCyiGlPgiAcQdU1IlOGnrn6In50v4fKuY34rm+CRVEk/5FPjPXmCP55lZjtKXJbBvDPryS8ohHXtJE8ylAAZiiblOxT8M+rAAlc7SCZV3+ElHwSf2M5WjSKVl5O5IbrKfvkJ9Hq6+n553/GLSul7BOfAEApKUX2+U5afQjCySACsiAIxy1UFkEv8+Pm7CPe804vpbB7aFWuwo4YuW0D5LfH8M0pJ3RRPdqCUrTGIIQlzPQ2cruexUo/TWHXo7gdLZhtbUiyjOzxUOjtp78jTmrLLto+dBOeiZOo/MhHGGpag1s0yXd1ndRrF4TRJrqsBUE4brZt46kNUSzx4MQPJ40IX9YEloNWG8Q8mMY1bIy9Cfzn1TDwP0+hzw4SXjoLuWiRW78L7+wlaPX14LpkX1lD6okncK0ihX1tyKUlxF7cT/HpOzF6DhK6+mqM9v3kN20inwgTvO7LFJGIP9ROYalLycK6U1gjgnDiiIAsCMJxc4o2uScPjAjGnilR1Aofsd/sRCnxElreQGFPHKdg4eoOwdkqStSLqnuwEgmSf3gcrb4eOx4ndscvaLjjvwlfsRIUBXP/fiTbJjTVQ2DlbcihEG3XXY+5bx+OMxkp3wi46IBz0CLbsY/scxvRJmpgJgiuuJhAZcXwuWVjMfzR6JjNfSwIbyW6rAVBOG6aV0ebEhnxmrEnQfLxNuSAhpMxcdQs3vkGpTdNxlcewWzdB5ZF6g+PkVu/nvrb/wPl0Jzg0KUrkL1eJFUl9dhjqBWVaGVl2Ht20/NP38NOJKj4/OfwL16MnUmMmIoFDA0Ki0fIPLkKYwvEt7TiFovDb/ff8T/svvQyrMEjE1wIwlgjArIgCO+Jd3YZqEMjtPwLq6j84gKqv7qYis/Oo/r/LEKOSvibmzF2D81nLvnIh8lv307JzTdT+qlPofh86NXVmG1tZF56GQCnUEDyeilsHcrqFLnqKvSmJrIvvwKKSs33v496dh2epRVIgbd37MXxVF5F0TiAtNml/57f41oWHc+tQTYW4Xb3kNm46WRVjyC8byIgC4LwnkiyPDRqWpEo9mZRIzpu0aFo5sAroasuxd5evLNm4eTzqOXlhC+7DLOjA0mSsLNZZL8fyeMlt24duddfR5Jl9KYJFDs7id9/P8Xubgrbt5PbsIHMCy+w/4MfJORXCM/3UvmVBWgXBJCXWjA7A8TBY+IpX4Kb2kFmp07n/3sG6WUJ2WtT84Pb8NTXkensxHpL61kQxhqxdKZYOlMQ3jPHcej53y24pRoenxdP2EdudzuBBRPwTioj9sguXBxCU6oxpCQlC6bipFIUu7vxTp8+XI4Vj3Pgk58ifNVVuPk8nimTQVEIX3opTj5Pdu06XKMAroscDOKZNIliXx/+s84aOo98nkJLC4MP/wEii9AKG8lt2YG29BYoD+CvCyEXYxi5PHYmTfCyywiXl5+qahPGKbF0piAIY5Ysy5TeMJVCbxpvbZjBu3fCoExi516802IU9yTBgfjmNEqJB3tCgdyWJFmzQLQijjcaRlIU8ps2UfejH+JKMrHbbyf6oQ8hqQqubTNw++3E774HJ5cDIPpnNxI491wcyzp8Hj4fWnUNpVevxLUs7Ph8IjfeiOzxYHZ24cpFAhdcjNnbS9tddxE4xopegjAWiIAsCML74o348Ub8GKk8cpUPqy0LQGF3fMR2dtyg54evAaAvKif2xDbcbApnYCvWmpcJXXIJubY2yr/weRJbNpN7/I8Ud+/C6urGNQ6P5k48/AjeWbMJXbESAMcw6Pqfe5A1DX+Jn8KuXZR8+BbsRIK2D1wHtk3oox8lMG8epDM0nHMOHtFlLYxhostadFkLwp9kcFMHhWe6cGLGu26rX1uPtzFC6mfbUadFsPSD5J55AP85n0BpDFFI7EQrraL8nMXkX12PGc9Q3DmI3X2A/N6NBC/+W5RgCNvrUtj8B9SSxaizSpCkBJIcxUn2g26T/r/fOnzMyZPQ6xsw29tpfuD3yH7/aFaHcBoS6RdHkQjIgnBiJfb04RzMYm4exOrNjXxTlsB1QYaa756Loih0/XYrzuYE2owo6vQI+Ve6oA6kthdxK86FjAe1zIc+KUJ0ST3p3f3kXu3FaU0PLX9d5eLxRzGSKbTmCObuTrRQBbIkY+dN7MIAhX2rKG56BdJDU56UinImv/jiMRNRCMKxiIA8ikRAFoQTL5fMYu1Okn2tB7XUi5MsopX5UII66RcOgiqhXl1LdHo1Az95HfJD+0khjfANkwjNqBhRXrFg0v/EHpzeHOGVzfhqI0hIyKo8HFSNbIHsy11YHRkCC6pJP3cAa2CoYM/ECG6Zg7npUbJPPY5TVUXo0hWUXHcdgcbGk1o3wvgmBnUJgjCu+CMBODtA+OxaAAqpHPmXuslt6Rt6f34lVsImubl7OBgDaEsqUKo8R5SneXUqr5lGzz1bSP9vC8oX5hAoDY3YxhPwkpQdih1Zkr1tOClz+D1jXxLpoAwl86n5r2vxNE/AzecxEokTf/GCcAKIgCwIwqjwhv14r5qEe+VE8l0pslv7CJSHiG/tRIpquJkiWKBEdQYfa8G5dDLB2ujw/rZl0/PkThRFw/YapH+3F3dlE77GCOmOQfQSP96gj+CcSpKvD2KnTZQpYZQyD6QtzJ1x3KKDOmkK4bNmDBUajeKtqRk+RiGZJLNxIwwO4lu+nEBJyUmuJUE4THRZiy5rQThprIyBq0hoPh3bsrGyBp6IH8dxcG0HRVMZbOnBU+In/mIbnooQFcsmkktkkGyIrd0DPh1WD0JQhVIPiqSg1vixBwo4B7KgSDheCQoO2A406dT/+aJ3PK/+J58k/cSTVH3ykwTmzT1JtSGMF+IZ8igSAVkQxj7HdnAcB1VTie/uoWRaNUa2gGs7FDMGgeoIjmHjGjb57iR6iR8zZ6B4VJSIB29wKF+ybdsox5FcIt/bS2LLVmouXTHalyaMMyIgjyIRkAVBEITjdbJihhj/LwiCIAhjgAjIgiAIgjAGiIAsCIIgCGOACMiCIAiCMAaIgCwIgiAIY4AIyIIgCIIwBoiALAiCIAhjgAjIgiAIgjAGiIAsCIIgCGOACMiCIAiCMAaIgCwIgiAIY4AIyIIgCIIwBoiALAiCIAhjgAjIgiAIgjAGqKf6BE6FNzNOplKpU3wmgiAIwlj3ZqwY7WzFZ2RATqfTADQ0NJziMxEEQRDGi1gsRiQSGbXyJXe0Q/4Y5DgOXV1dhEIhJEk61adz0qRSKRoaGjh48OCoJtkeD0RdHCbq4jBRF4eJujgsmUzS2NhIPB4nGo2O2nHOyBayLMvU19ef6tM4ZcLh8Bn/C/YmUReHibo4TNTFYaIuDpPl0R12JQZ1CYIgCMIYIAKyIAiCIIwBIiCfQTweD7feeisej+dUn8opJ+riMFEXh4m6OEzUxWEnqy7OyEFdgiAIgjDWiBayIAiCIIwBIiALgiAIwhggArIgCIIgjAEiIAuCIAjCGCAC8ji1evVqrrnmGmpra5EkiYcffnjE+5lMhs9//vPU19fj8/mYMWMG//mf//mOZf7qV79CkqQjfgqFwiheyZ/u3eqit7eXj3/849TW1uL3+1m5ciV79ux513IfeOABZs6cicfjYebMmTz00EOjdAUnzmjUxXi9L77//e+zePFiQqEQlZWVXHfddezevXvENq7r8u1vf5va2lp8Ph8XXXQR27dvf9eyx9O9MVr1MB7vi+OpiwcffJDLL7+c8vJyJEli06ZNx1X2ibgnREAep7LZLPPmzeNnP/vZUd//8pe/zJNPPslvfvMbdu7cyZe//GW+8IUv8Mgjj7xjueFwmO7u7hE/Xq93NC7hhHmnunBdl+uuu459+/bxyCOPsHHjRpqamlixYgXZbPaYZa5du5abbrqJj370o2zevJmPfvSjfOhDH2L9+vWjeSl/stGoCxif98WLL77I5z73OdatW8czzzyDZVlcdtllI671Bz/4AT/+8Y/52c9+xoYNG6iurubSSy8dXu/+aMbbvTFa9QDj7744nrrIZrOcd9553Hbbbcdd7gm7J1xh3APchx56aMRrs2bNcr/73e+OeG3BggXuN77xjWOWc+edd7qRSGQUzvDkeXtd7N692wXcbdu2Db9mWZZbWlrq3nHHHccs50Mf+pC7cuXKEa9dfvnl7s0333zCz3m0nKi6OB3uC9d13b6+PhdwX3zxRdd1XddxHLe6utq97bbbhrcpFApuJBJxf/7znx+znPF+b5yoejgd7ou318VbtbW1uYC7cePGdy3nRN0TooV8mjr//PN59NFH6ezsxHVdVq1aRUtLC5dffvk77pfJZGhqaqK+vp6rr76ajRs3nqQzHh2GYQCM+NauKAq6rvPyyy8fc7+1a9dy2WWXjXjt8ssvZ82aNaNzoifB+60LOD3ui2QyCUBpaSkAbW1t9PT0jPicPR4Py5Yte8fPebzfGyeqHmD83xdvr4v360TdEyIgn6Z++tOfMnPmTOrr69F1nZUrV3L77bdz/vnnH3Of6dOn86tf/YpHH32U3/72t3i9Xs4777zjet46Vk2fPp2mpib+4R/+gXg8jmma3HbbbfT09NDd3X3M/Xp6eqiqqhrxWlVVFT09PaN9yqPm/dbF6XBfuK7LV77yFc4//3xmz54NMPxZvtfPeTzfGyeyHsb7fXG0uni/TtQ9cUZmezoT/PSnP2XdunU8+uijNDU1sXr1aj772c9SU1PDihUrjrrP0qVLWbp06fD/zzvvPBYsWMC///u/89Of/vRknfoJpWkaDzzwAJ/61KcoLS1FURRWrFjBFVdc8a77vj01p+u64zpd5/uti9Phvvj85z/Pli1bjtoT8H4+5/F6b5zIehjv98U71cX7cSLuCRGQT0P5fJ6vf/3rPPTQQ1x11VUAzJ07l02bNvGjH/3omAH57WRZZvHixePmG++xLFy4kE2bNpFMJjFNk4qKCpYsWcKiRYuOuU91dfUR3277+vqO+BY83ryfuni78XZffOELX+DRRx9l9erVI9KuVldXA0Otm5qamuHX3+1zHq/3xomuh7cbT/fFseri/TpR94Tosj4NFYtFisXiEbk7FUXBcZzjLsd1XTZt2jTil3Q8i0QiVFRUsGfPHl577TU+8IEPHHPbc845h2eeeWbEa08//TTnnnvuaJ/mSfFe6uLtxst94boun//853nwwQd5/vnnaW5uHvF+c3Mz1dXVIz5n0zR58cUX3/FzHm/3xmjVw9GOM9bvi3eri/frhN0T72kImDBmpNNpd+PGje7GjRtdwP3xj3/sbty40W1vb3dd13WXLVvmzpo1y121apW7b98+984773S9Xq97++23D5fx0Y9+1P3a1742/P9vf/vb7pNPPum2tra6GzdudD/xiU+4qqq669evP+nX9168W13cd9997qpVq9zW1lb34YcfdpuamtwbbrhhRBlvr4tXXnnFVRTFve2229ydO3e6t912m6uqqrtu3bqTem3v1WjUxXi9Lz7zmc+4kUjEfeGFF9zu7u7hn1wuN7zNbbfd5kYiEffBBx90t27d6t5yyy1uTU2Nm0qlhrcZ7/fGaNXDeLwvjqcuYrGYu3HjRvfxxx93Affee+91N27c6HZ3dw9vM1r3hAjI49SqVatc4Iifv/iLv3Bd13W7u7vdj3/8425tba3r9XrdadOmuf/6r//qOo4zXMayZcuGt3dd1/3Sl77kNjY2urquuxUVFe5ll13mrlmz5iRf2Xv3bnXxk5/8xK2vr3c1TXMbGxvdb3zjG65hGCPKeHtduK7r3n///e60adNcTdPc6dOnuw888MBJuqL3bzTqYrzeF0erB8C98847h7dxHMe99dZb3erqatfj8bgXXnihu3Xr1hHljPd7Y7TqYTzeF8dTF3feeedRt7n11luHtxmte0KkXxQEQRCEMUA8QxYEQRCEMUAEZEEQBEEYA0RAFgRBEIQxQARkQRAEQRgDREAWBEEQhDFABGRBEARBGANEQBYEQRCEMUAEZEEQBEEYA0RAFgRBEIQxQARkQRAEQRgDREAWBEEQhDFABGRBEARBGAP+f5syXurxrpwTAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "#intersection of vegtypes and remnants\n", "veg_remnants = gpd.overlay(vegtypes,remnants,how='intersection')\n", @@ -756,9 +1366,103 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Name_18MAPCODE18RLE2021Endemicgeometry
0Atlantis Sand FynbosFFd4CREndemicMULTIPOLYGON (((18.74560 -33.57731, 18.74559 -...
1Atlantis Sand FynbosFFd4CREndemicPOLYGON ((18.75564 -33.57943, 18.75566 -33.579...
2Atlantis Sand FynbosFFd4CREndemicMULTIPOLYGON (((18.74138 -33.58110, 18.74144 -...
3Atlantis Sand FynbosFFd4ENEndemicPOLYGON ((18.74125 -33.58128, 18.74147 -33.581...
4Atlantis Sand FynbosFFd4ENEndemicMULTIPOLYGON (((18.76906 -33.58237, 18.76920 -...
\n", + "
" + ], + "text/plain": [ + " Name_18 MAPCODE18 RLE2021 Endemic \\\n", + "0 Atlantis Sand Fynbos FFd4 CR Endemic \n", + "1 Atlantis Sand Fynbos FFd4 CR Endemic \n", + "2 Atlantis Sand Fynbos FFd4 CR Endemic \n", + "3 Atlantis Sand Fynbos FFd4 EN Endemic \n", + "4 Atlantis Sand Fynbos FFd4 EN Endemic \n", + "\n", + " geometry \n", + "0 MULTIPOLYGON (((18.74560 -33.57731, 18.74559 -... \n", + "1 POLYGON ((18.75564 -33.57943, 18.75566 -33.579... \n", + "2 MULTIPOLYGON (((18.74138 -33.58110, 18.74144 -... \n", + "3 POLYGON ((18.74125 -33.58128, 18.74147 -33.581... \n", + "4 MULTIPOLYGON (((18.76906 -33.58237, 18.76920 -... " + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "veg_remnants.head()" ] @@ -772,9 +1476,97 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
geometryName_18MAPCODE18Endemic
RLE2021
CRMULTIPOLYGON (((18.35222 -34.15510, 18.35224 -...Atlantis Sand FynbosFFd4Endemic
ENMULTIPOLYGON (((18.24263 -33.41139, 18.24241 -...Atlantis Sand FynbosFFd4Endemic
LCMULTIPOLYGON (((18.26847 -33.42568, 18.26847 -...Atlantis Sand FynbosFFd4Endemic
VUMULTIPOLYGON (((18.42952 -33.99259, 18.42953 -...Atlantis Sand FynbosFFd4Endemic
\n", + "
" + ], + "text/plain": [ + " geometry \\\n", + "RLE2021 \n", + "CR MULTIPOLYGON (((18.35222 -34.15510, 18.35224 -... \n", + "EN MULTIPOLYGON (((18.24263 -33.41139, 18.24241 -... \n", + "LC MULTIPOLYGON (((18.26847 -33.42568, 18.26847 -... \n", + "VU MULTIPOLYGON (((18.42952 -33.99259, 18.42953 -... \n", + "\n", + " Name_18 MAPCODE18 Endemic \n", + "RLE2021 \n", + "CR Atlantis Sand Fynbos FFd4 Endemic \n", + "EN Atlantis Sand Fynbos FFd4 Endemic \n", + "LC Atlantis Sand Fynbos FFd4 Endemic \n", + "VU Atlantis Sand Fynbos FFd4 Endemic " + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#all polygons with the saem threat status into one\n", "veg_remnants_simple = veg_remnants.dissolve('RLE2021')\n", @@ -834,9 +1626,397 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray (x: 2, y: 3)> Size: 48B\n",
+       "array([[-1.11348968, -0.09590683, -0.31952776],\n",
+       "       [ 0.60124029,  0.46619606, -0.18626485]])\n",
+       "Coordinates:\n",
+       "  * x        (x) int64 16B 10 20\n",
+       "  * y        (y) float64 24B 1.1 1.2 1.3
" + ], + "text/plain": [ + " Size: 48B\n", + "array([[-1.11348968, -0.09590683, -0.31952776],\n", + " [ 0.60124029, 0.46619606, -0.18626485]])\n", + "Coordinates:\n", + " * x (x) int64 16B 10 20\n", + " * y (y) float64 24B 1.1 1.2 1.3" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#typically we use the xr aliais\n", "import xarray as xr\n", @@ -863,9 +2043,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[-1.11348968 -0.09590683 -0.31952776]\n", + " [ 0.60124029 0.46619606 -0.18626485]]\n" + ] + } + ], "source": [ "#get the actual data\n", "print(xda.values)" @@ -873,9 +2062,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('x', 'y')\n" + ] + } + ], "source": [ "#get teh dimenson names\n", "print(xda.dims)" @@ -883,9 +2080,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Size: 16B\n", + "array([10, 20])\n", + "Coordinates:\n", + " * x (x) int64 16B 10 20\n" + ] + } + ], "source": [ "#get the x coordinates\n", "print(xda.x)" @@ -900,9 +2108,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'long_name': 'random mesurement', 'random_attribute': 123}\n" + ] + } + ], "source": [ "xda.attrs[\"long_name\"] = \"random mesurement\"\n", "xda.attrs[\"random_attribute\"] = 123\n", @@ -919,18 +2135,800 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray (x: 2, y: 3)> Size: 48B\n",
+       "array([[ 8.88651032,  9.90409317,  9.68047224],\n",
+       "       [10.60124029, 10.46619606,  9.81373515]])\n",
+       "Coordinates:\n",
+       "  * x        (x) int64 16B 10 20\n",
+       "  * y        (y) float64 24B 1.1 1.2 1.3
" + ], + "text/plain": [ + " Size: 48B\n", + "array([[ 8.88651032, 9.90409317, 9.68047224],\n", + " [10.60124029, 10.46619606, 9.81373515]])\n", + "Coordinates:\n", + " * x (x) int64 16B 10 20\n", + " * y (y) float64 24B 1.1 1.2 1.3" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "xda + 10" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 40, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray (x: 2, y: 3)> Size: 48B\n",
+       "array([[-0.89724495, -0.09575987, -0.31411826],\n",
+       "       [ 0.56566569,  0.44949154, -0.18518965]])\n",
+       "Coordinates:\n",
+       "  * x        (x) int64 16B 10 20\n",
+       "  * y        (y) float64 24B 1.1 1.2 1.3\n",
+       "Attributes:\n",
+       "    long_name:         random mesurement\n",
+       "    random_attribute:  123
" + ], + "text/plain": [ + " Size: 48B\n", + "array([[-0.89724495, -0.09575987, -0.31411826],\n", + " [ 0.56566569, 0.44949154, -0.18518965]])\n", + "Coordinates:\n", + " * x (x) int64 16B 10 20\n", + " * y (y) float64 24B 1.1 1.2 1.3\n", + "Attributes:\n", + " long_name: random mesurement\n", + " random_attribute: 123" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "np.sin(xda)" ] @@ -944,9 +2942,409 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 312B\n",
+       "Dimensions:  (x: 2, y: 3, z: 4)\n",
+       "Coordinates:\n",
+       "  * x        (x) int64 16B 10 20\n",
+       "  * y        (y) float64 24B 1.1 1.2 1.3\n",
+       "  * z        (z) int64 32B 20 200 2000 20000\n",
+       "Data variables:\n",
+       "    foo      (x, y) float64 48B -1.113 -0.09591 -0.3195 0.6012 0.4662 -0.1863\n",
+       "    bar      (x, y, z) float64 192B -0.0297 0.2747 0.67 ... 0.14 1.905 0.2858
" + ], + "text/plain": [ + " Size: 312B\n", + "Dimensions: (x: 2, y: 3, z: 4)\n", + "Coordinates:\n", + " * x (x) int64 16B 10 20\n", + " * y (y) float64 24B 1.1 1.2 1.3\n", + " * z (z) int64 32B 20 200 2000 20000\n", + "Data variables:\n", + " foo (x, y) float64 48B -1.113 -0.09591 -0.3195 0.6012 0.4662 -0.1863\n", + " bar (x, y, z) float64 192B -0.0297 0.2747 0.67 ... 0.14 1.905 0.2858" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#create a new dataarray with aligned dimensions (but it can be more or fewer dims)\n", "#create a new 2x3x4 xarray Dataarray\n", @@ -971,9 +3369,403 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 42, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'foo' (x: 2, y: 3)> Size: 48B\n",
+       "array([[-1.11348968, -0.09590683, -0.31952776],\n",
+       "       [ 0.60124029,  0.46619606, -0.18626485]])\n",
+       "Coordinates:\n",
+       "  * x        (x) int64 16B 10 20\n",
+       "  * y        (y) float64 24B 1.1 1.2 1.3\n",
+       "Attributes:\n",
+       "    long_name:         random mesurement\n",
+       "    random_attribute:  123
" + ], + "text/plain": [ + " Size: 48B\n", + "array([[-1.11348968, -0.09590683, -0.31952776],\n", + " [ 0.60124029, 0.46619606, -0.18626485]])\n", + "Coordinates:\n", + " * x (x) int64 16B 10 20\n", + " * y (y) float64 24B 1.1 1.2 1.3\n", + "Attributes:\n", + " long_name: random mesurement\n", + " random_attribute: 123" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "xds.foo\n", "# xds['foo'] works the same" @@ -1023,11 +3815,418 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 43, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 33MB\n",
+       "Dimensions:      (wl: 267, x: 250, y: 250)\n",
+       "Coordinates:\n",
+       "  * wl           (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.383 2.389 2.395\n",
+       "  * x            (x) float64 2kB 3.173e+05 3.173e+05 ... 3.18e+05 3.18e+05\n",
+       "  * y            (y) float64 2kB 6.263e+06 6.263e+06 ... 6.262e+06 6.262e+06\n",
+       "Data variables:\n",
+       "    reflectance  (wl, y, x) int16 33MB ...
" + ], + "text/plain": [ + " Size: 33MB\n", + "Dimensions: (wl: 267, x: 250, y: 250)\n", + "Coordinates:\n", + " * wl (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.383 2.389 2.395\n", + " * x (x) float64 2kB 3.173e+05 3.173e+05 ... 3.18e+05 3.18e+05\n", + " * y (y) float64 2kB 6.263e+06 6.263e+06 ... 6.262e+06 6.262e+06\n", + "Data variables:\n", + " reflectance (wl, y, x) int16 33MB ..." + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "xda_is = xr.open_dataset(\"shared/users/gmoncrieff/data/is_example.nc\")\n", + "xda_is = xr.open_dataset(\"/shared/users/gmoncrieff/is_example.nc\")\n", "xda_is" ] }, @@ -1042,9 +4241,405 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 44, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 3kB\n",
+       "Dimensions:      (wl: 267)\n",
+       "Coordinates:\n",
+       "  * wl           (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.383 2.389 2.395\n",
+       "    x            float64 8B 3.173e+05\n",
+       "    y            float64 8B 6.263e+06\n",
+       "Data variables:\n",
+       "    reflectance  (wl) int16 534B ...
" + ], + "text/plain": [ + " Size: 3kB\n", + "Dimensions: (wl: 267)\n", + "Coordinates:\n", + " * wl (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.383 2.389 2.395\n", + " x float64 8B 3.173e+05\n", + " y float64 8B 6.263e+06\n", + "Data variables:\n", + " reflectance (wl) int16 534B ..." + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#idexing using position\n", "xda_is.isel(x=20,y=20)" @@ -1059,9 +4654,405 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 45, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 216B\n",
+       "Dimensions:      (wl: 20)\n",
+       "Coordinates:\n",
+       "  * wl           (wl) float64 160B 0.4066 0.4134 0.4201 ... 0.5222 0.529 0.5359\n",
+       "    x            float64 8B 3.173e+05\n",
+       "    y            float64 8B 6.263e+06\n",
+       "Data variables:\n",
+       "    reflectance  (wl) int16 40B ...
" + ], + "text/plain": [ + " Size: 216B\n", + "Dimensions: (wl: 20)\n", + "Coordinates:\n", + " * wl (wl) float64 160B 0.4066 0.4134 0.4201 ... 0.5222 0.529 0.5359\n", + " x float64 8B 3.173e+05\n", + " y float64 8B 6.263e+06\n", + "Data variables:\n", + " reflectance (wl) int16 40B ..." + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "xda_is.isel(x=20,y=20,wl=slice(0,20))" ] @@ -1075,9 +5066,405 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 46, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 3kB\n",
+       "Dimensions:      (wl: 267)\n",
+       "Coordinates:\n",
+       "  * wl           (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.383 2.389 2.395\n",
+       "    x            float64 8B 3.175e+05\n",
+       "    y            float64 8B 6.263e+06\n",
+       "Data variables:\n",
+       "    reflectance  (wl) int16 534B ...
" + ], + "text/plain": [ + " Size: 3kB\n", + "Dimensions: (wl: 267)\n", + "Coordinates:\n", + " * wl (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.383 2.389 2.395\n", + " x float64 8B 3.175e+05\n", + " y float64 8B 6.263e+06\n", + "Data variables:\n", + " reflectance (wl) int16 534B ..." + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "xda_is.sel(x=3.175e+05,y=6.263e+06,method='nearest')" ] @@ -1091,9 +5478,456 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 55MB\n",
+       "Dimensions:      (wl: 218, y: 250, x: 250)\n",
+       "Coordinates:\n",
+       "  * wl           (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.082 2.088 2.095\n",
+       "  * x            (x) float64 2kB 3.173e+05 3.173e+05 ... 3.18e+05 3.18e+05\n",
+       "  * y            (y) float64 2kB 6.263e+06 6.263e+06 ... 6.262e+06 6.262e+06\n",
+       "Data variables:\n",
+       "    reflectance  (wl, y, x) float32 54MB 39.0 24.0 32.0 ... 1.613e+03 1.702e+03
" + ], + "text/plain": [ + " Size: 55MB\n", + "Dimensions: (wl: 218, y: 250, x: 250)\n", + "Coordinates:\n", + " * wl (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.082 2.088 2.095\n", + " * x (x) float64 2kB 3.173e+05 3.173e+05 ... 3.18e+05 3.18e+05\n", + " * y (y) float64 2kB 6.263e+06 6.263e+06 ... 6.262e+06 6.262e+06\n", + "Data variables:\n", + " reflectance (wl, y, x) float32 54MB 39.0 24.0 32.0 ... 1.613e+03 1.702e+03" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# drop bad bands\n", "xda_is = xda_is.where(xda_is.wl < 2.1,drop=True)\n", @@ -1109,9 +5943,456 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 48, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 55MB\n",
+       "Dimensions:      (wl: 218, y: 250, x: 250)\n",
+       "Coordinates:\n",
+       "  * wl           (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.082 2.088 2.095\n",
+       "  * x            (x) float64 2kB 3.173e+05 3.173e+05 ... 3.18e+05 3.18e+05\n",
+       "  * y            (y) float64 2kB 6.263e+06 6.263e+06 ... 6.262e+06 6.262e+06\n",
+       "Data variables:\n",
+       "    reflectance  (wl, y, x) float32 54MB 39.0 24.0 32.0 ... 1.613e+03 1.702e+03
" + ], + "text/plain": [ + " Size: 55MB\n", + "Dimensions: (wl: 218, y: 250, x: 250)\n", + "Coordinates:\n", + " * wl (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.082 2.088 2.095\n", + " * x (x) float64 2kB 3.173e+05 3.173e+05 ... 3.18e+05 3.18e+05\n", + " * y (y) float64 2kB 6.263e+06 6.263e+06 ... 6.262e+06 6.262e+06\n", + "Data variables:\n", + " reflectance (wl, y, x) float32 54MB 39.0 24.0 32.0 ... 1.613e+03 1.702e+03" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "xda_is.compute()" ] @@ -1126,11 +6407,512 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 49, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 33MB\n",
+       "Dimensions:      (wl: 267, x: 250, y: 250)\n",
+       "Coordinates:\n",
+       "  * wl           (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.383 2.389 2.395\n",
+       "  * x            (x) float64 2kB 3.173e+05 3.173e+05 ... 3.18e+05 3.18e+05\n",
+       "  * y            (y) float64 2kB 6.263e+06 6.263e+06 ... 6.262e+06 6.262e+06\n",
+       "Data variables:\n",
+       "    reflectance  (wl, y, x) int16 33MB dask.array<chunksize=(267, 50, 50), meta=np.ndarray>
" + ], + "text/plain": [ + " Size: 33MB\n", + "Dimensions: (wl: 267, x: 250, y: 250)\n", + "Coordinates:\n", + " * wl (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.383 2.389 2.395\n", + " * x (x) float64 2kB 3.173e+05 3.173e+05 ... 3.18e+05 3.18e+05\n", + " * y (y) float64 2kB 6.263e+06 6.263e+06 ... 6.262e+06 6.262e+06\n", + "Data variables:\n", + " reflectance (wl, y, x) int16 33MB dask.array" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "xda_chunk = xr.open_dataset(\"data/is_example.nc\",chunks={'x':50,'y':50,'wl':-1})\n", + "xda_chunk = xr.open_dataset(\"/shared/users/gmoncrieff/is_example.nc\",chunks={'x':50,'y':50,'wl':-1})\n", "xda_chunk" ] }, @@ -1172,9 +6954,510 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 50, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 55MB\n",
+       "Dimensions:      (wl: 218, y: 250, x: 250)\n",
+       "Coordinates:\n",
+       "  * wl           (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.082 2.088 2.095\n",
+       "  * x            (x) float64 2kB 3.173e+05 3.173e+05 ... 3.18e+05 3.18e+05\n",
+       "  * y            (y) float64 2kB 6.263e+06 6.263e+06 ... 6.262e+06 6.262e+06\n",
+       "Data variables:\n",
+       "    reflectance  (wl, y, x) float32 54MB dask.array<chunksize=(218, 50, 50), meta=np.ndarray>
" + ], + "text/plain": [ + " Size: 55MB\n", + "Dimensions: (wl: 218, y: 250, x: 250)\n", + "Coordinates:\n", + " * wl (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.082 2.088 2.095\n", + " * x (x) float64 2kB 3.173e+05 3.173e+05 ... 3.18e+05 3.18e+05\n", + " * y (y) float64 2kB 6.263e+06 6.263e+06 ... 6.262e+06 6.262e+06\n", + "Data variables:\n", + " reflectance (wl, y, x) float32 54MB dask.array" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "#the example from above\n", "xda_chunk = xda_chunk.where(xda_chunk.wl < 2.1,drop=True)\n", @@ -1198,7 +7481,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ @@ -1214,9 +7497,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "CRS.from_epsg(32734)" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "xda_chunk = xda_chunk.rio.write_crs('epsg:32734')\n", "xda_chunk.rio.crs" @@ -1224,9 +7518,512 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 53, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 55MB\n",
+       "Dimensions:      (wl: 218, y: 250, x: 250)\n",
+       "Coordinates:\n",
+       "  * wl           (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.082 2.088 2.095\n",
+       "  * x            (x) float64 2kB 3.173e+05 3.173e+05 ... 3.18e+05 3.18e+05\n",
+       "  * y            (y) float64 2kB 6.263e+06 6.263e+06 ... 6.262e+06 6.262e+06\n",
+       "    spatial_ref  int64 8B 0\n",
+       "Data variables:\n",
+       "    reflectance  (wl, y, x) float32 54MB dask.array<chunksize=(218, 50, 50), meta=np.ndarray>
" + ], + "text/plain": [ + " Size: 55MB\n", + "Dimensions: (wl: 218, y: 250, x: 250)\n", + "Coordinates:\n", + " * wl (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.082 2.088 2.095\n", + " * x (x) float64 2kB 3.173e+05 3.173e+05 ... 3.18e+05 3.18e+05\n", + " * y (y) float64 2kB 6.263e+06 6.263e+06 ... 6.262e+06 6.262e+06\n", + " spatial_ref int64 8B 0\n", + "Data variables:\n", + " reflectance (wl, y, x) float32 54MB dask.array" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "xda_chunk" ] @@ -1240,9 +8037,466 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 54, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 56MB\n",
+       "Dimensions:      (x: 277, y: 232, wl: 218)\n",
+       "Coordinates:\n",
+       "  * x            (x) float64 2kB 19.03 19.03 19.03 19.03 ... 19.04 19.04 19.04\n",
+       "  * y            (y) float64 2kB -33.76 -33.76 -33.76 ... -33.77 -33.77 -33.77\n",
+       "  * wl           (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.082 2.088 2.095\n",
+       "    spatial_ref  int64 8B 0\n",
+       "Data variables:\n",
+       "    reflectance  (wl, y, x) float32 56MB 3.403e+38 3.403e+38 ... 3.403e+38
" + ], + "text/plain": [ + " Size: 56MB\n", + "Dimensions: (x: 277, y: 232, wl: 218)\n", + "Coordinates:\n", + " * x (x) float64 2kB 19.03 19.03 19.03 19.03 ... 19.04 19.04 19.04\n", + " * y (y) float64 2kB -33.76 -33.76 -33.76 ... -33.77 -33.77 -33.77\n", + " * wl (wl) float64 2kB 0.4066 0.4134 0.4201 ... 2.082 2.088 2.095\n", + " spatial_ref int64 8B 0\n", + "Data variables:\n", + " reflectance (wl, y, x) float32 56MB 3.403e+38 3.403e+38 ... 3.403e+38" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "xda_chunk_wgs = xda_chunk.rio.reproject('epsg:4326')\n", "xda_chunk_wgs" @@ -1280,9 +8534,9 @@ "provenance": [] }, "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "global-global-BioSCape", "language": "python", - "name": "python3" + "name": "conda-env-global-global-BioSCape-py" }, "language_info": { "codemirror_mode": { @@ -1294,7 +8548,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.12" + "version": "3.12.3" } }, "nbformat": 4,