library(HemaScopeR)
scRNASeq_10x_pipeline(
# input and output
input.data.dirs = c('/input/path/dataset1',
'/input/path/dataset2'),
project.names = c('project1',
'project2'),
output.dir = '/output/path/',
pythonPath = '/python/path/',
databasePath = '/database/path/',
# quality control and preprocessing
gene.column = 2,
min.cells = 10,
min.feature = 200,
mt.pattern = '^MT-',
nFeature_RNA.limit = 200,
percent.mt.limit = 20,
scale.factor = 10000,
nfeatures = 3000,
ndims = 50,
vars.to.regress = NULL,
PCs = 1:35,
resolution = 0.4,
n.neighbors = 50,
# remove doublets
doublet.percentage = 0.04,
doublerFinderwraper.PCs = 1:20,
doublerFinderwraper.pN = 0.25,
doublerFinderwraper.pK = 0.1,
# phateR
phate.knn = 50,
phate.npca = 20,
phate.t = 10,
phate.ndim = 2,
min.pct = 0.25,
logfc.threshold = 0.25,
# visualization
ViolinPlot.cellTypeOrders = as.character(1:22),
ViolinPlot.cellTypeColors = NULL,
Org = 'hsa',
loom.files.path = c( '/input/velocyto/dataset1.loom',
'/input/velocyto/dataset2.loom'),
# cell cycle
cellcycleCutoff = NULL,
# cell chat
sorting = FALSE,
ncores = 10,
# Verbose = FALSE,
# activeEachStep
Whether_load_previous_results = FALSE,
Step1_Input_Data = TRUE,
Step1_Input_Data.type = 'cellranger-count',
Step2_Quality_Control = TRUE,
Step2_Quality_Control.RemoveBatches = FALSE,
Step2_Quality_Control.RemoveDoublets = TRUE,
Step3_Clustering = TRUE,
Step4_Identify_Cell_Types = TRUE,
Step4_Use_Which_Labels = 'clustering',
Step4_Cluster_Labels = NULL,
Step4_Changed_Labels = NULL,
Step4_run_sc_CNV = FALSE,
Step5_Visualization = TRUE,
Step6_Find_DEGs = TRUE,
Step7_Assign_Cell_Cycle = TRUE,
Step8_Calculate_Heterogeneity = TRUE,
Step9_Violin_Plot_for_Marker_Genes = TRUE,
Step10_Calculate_Lineage_Scores = TRUE,
Step11_GSVA = TRUE,
Step11_GSVA.identify.cellType.features=TRUE,
Step11_GSVA.identify.diff.features=FALSE,
Step11_GSVA.comparison.design=NULL,
Step12_Construct_Trajectories = TRUE,
Step12_Construct_Trajectories.clusters = c('cluster1', 'cluster2', 'cluster3'),
Step12_Construct_Trajectories.monocle = TRUE,
Step12_Construct_Trajectories.slingshot = TRUE,
Step12_Construct_Trajectories.scVelo = TRUE,
Step13_TF_Analysis = TRUE,
Step14_Cell_Cell_Interaction = TRUE,
Step15_Generate_the_Report = TRUE
)
Follow the documents of each function in HemaScopeR.
library(HemaScopeR)
st_10x_visium_pipeline(
input.data.dir = '/Path/to/data',
output.dir = '/Path/to/save',
sampleName = 'Hema',
Step2_QC = T,
Step3_Clustering = T,
Step4_Find_DEGs = T,
Step5_SVFs = T,
Step6_Interaction = T,
Step7_CNV = T,
Step8_Deconvolution = T,
Step9_Cellcycle = T,
Step10_Nich = T,
# settings
verbose = FALSE,
species = 'mouse', # human or mosue
genReport = TRUE
)
Follow the documents of each function in HemaScopeR.
library(HemaScopeR)
shinyApp(ui = ui,
server = server,
options = list(host = your_host, port = your_port))
Proceed with the remaining steps by following the instructions on the GUI to execute the pipeline step by step.
docker pull l1hj/hemascoper
docker run -it --security-opt seccomp=unconfined hemascoper /bin/bash
Jupyter notebook is also available, which can be started as follow (e.g. set the port as 8888):
docker run -i -t -p 8888:8888 continuumio/miniconda3 /bin/bash -c "\
mkdir -p /opt/notebooks && \
jupyter notebook \
--notebook-dir=/opt/notebooks --ip='*' --port=8888 \
--no-browser --allow-root"
The demo datasets are available in our Cloud Drive via this link https://cloud.tsinghua.edu.cn/d/3d363e32665249409571/.
We use the SRR7881414 dataset from demo datasets to demonstrate the scRNA-seq pipeline in HemaScopeR.
library(HemaScopeR)
scRNASeq_10x_pipeline(
# input and output
input.data.dirs = c('./testData/SRR7881414_filtered_feature_bc_matrix'),
project.names = c('SRR7881414'),
output.dir = './testData/SRR7881414_result',
pythonPath = '/python/path',
databasePath = '/database/path/',
# quality control and preprocessing
gene.column = 2,
min.cells = 10,
min.feature = 200,
mt.pattern = '^MT-',
nFeature_RNA.limit = 200,
percent.mt.limit = 20,
scale.factor = 10000,
nfeatures = 3000,
ndims = 50,
vars.to.regress = NULL,
PCs = 1:35,
resolution = 0.4,
n.neighbors = 50,
# remove doublets
doublet.percentage = 0.04,
doublerFinderwraper.PCs = 1:20,
doublerFinderwraper.pN = 0.25,
doublerFinderwraper.pK = 0.1,
# phateR
phate.knn = 50,
phate.npca = 20,
phate.t = 10,
phate.ndim = 2,
min.pct = 0.25,
logfc.threshold = 0.25,
# visualization
ViolinPlot.cellTypeOrders = NULL,
ViolinPlot.cellTypeColors = NULL,
Org = 'hsa',
loom.files.path = c('./testData/SRR7881414.loom'),
# cell cycle
cellcycleCutoff = NULL,
# cell chat
sorting = FALSE,
ncores = 10,
# Verbose = FALSE,
# activeEachStep
Whether_load_previous_results = FALSE,
Step1_Input_Data = TRUE,
Step1_Input_Data.type = 'cellranger-count',
Step2_Quality_Control = TRUE,
Step2_Quality_Control.RemoveBatches = FALSE,
Step2_Quality_Control.RemoveDoublets = TRUE,
Step3_Clustering = TRUE,
Step4_Identify_Cell_Types = TRUE,
Step4_Use_Which_Labels = 'clustering',
Step4_Cluster_Labels = NULL,
Step4_Changed_Labels = NULL,
Step4_run_sc_CNV = TRUE,
Step5_Visualization = TRUE,
Step6_Find_DEGs = TRUE,
Step7_Assign_Cell_Cycle = TRUE,
Step8_Calculate_Heterogeneity = TRUE,
Step9_Violin_Plot_for_Marker_Genes = TRUE,
Step10_Calculate_Lineage_Scores = TRUE,
Step11_GSVA = TRUE,
Step11_GSVA.identify.cellType.features=TRUE,
Step11_GSVA.identify.diff.features=FALSE,
Step11_GSVA.comparison.design=NULL,
Step12_Construct_Trajectories = TRUE,
Step12_Construct_Trajectories.clusters = NULL,
Step12_Construct_Trajectories.monocle = TRUE,
Step12_Construct_Trajectories.slingshot = TRUE,
Step12_Construct_Trajectories.scVelo = TRUE,
Step13_TF_Analysis = TRUE,
Step14_Cell_Cell_Interaction = TRUE,
Step15_Generate_the_Report = TRUE
)
We use one sample from the GSE230207 dataset in the demo datasets to showcase the st-seq pipeline in HemaScopeR. The other st-seq datasets within the demo can be run using the same code. And you just need to adjust specific paths and parameters.
library(HemaScopeR)
st_10x_visium_pipeline(
input.data.dir = './testData/GSE230207_RAW/hot',
output.dir = './testData/GSE230207_hot_result',
sampleName = 'GSE230207_hot',
Step2_QC = TRUE,
Step3_Clustering = TRUE,
Step4_Find_DEGs = TRUE,
Step5_SVFs = TRUE,
Step6_Interaction = TRUE,
Step7_CNV = TRUE,
Step8_Deconvolution = TRUE,
Step9_Cellcycle = TRUE,
Step10_Nich = TRUE,
# settings
verbose = FALSE,
species = 'human', # human or mosue
genReport = TRUE
)
The HTML-formatted demo analysis reports can be accessed via these links https://github.com/ZhenyiWangTHU/HemaScopeR/blob/main/sc_demo_report.rar and https://github.com/ZhenyiWangTHU/HemaScopeR/blob/main/st_demo_report.rar, at the same time, we are continually updating and optimizing the format and content of these reports.