-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
animatediff_ToonYou.py
80 lines (78 loc) · 2.78 KB
/
animatediff_ToonYou.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# config for model
stable_diffusion_v15_url = 'runwayml/stable-diffusion-v1-5'
models_path = '/home/AnimateDiff/models/'
randomness = dict(
seed=[
10788741199826055526, 6520604954829636163, 6519455744612555650,
16372571278361863751
],
diff_rank_seed=True)
val_prompts = [
'best quality, masterpiece, 1girl, looking at viewer,\
blurry background, upper body, contemporary, dress',
'masterpiece, best quality, 1girl, solo, cherry blossoms,\
hanami, pink flower, white flower, spring season, wisteria,\
petals, flower, plum blossoms, outdoors, falling petals,\
white hair, black eyes,',
'best quality, masterpiece, 1boy, formal, abstract,\
looking at viewer, masculine, marble pattern',
'best quality, masterpiece, 1girl, cloudy sky,\
dandelion, contrapposto, alternate hairstyle,'
]
val_neg_propmts = [
'',
'badhandv4,easynegative,ng_deepnegative_v1_75t,verybadimagenegative_v1.3,\
bad-artist, bad_prompt_version2-neg, teeth',
'',
'',
]
diffusion_scheduler = dict(
type='DDIMScheduler',
beta_end=0.012,
beta_schedule='linear',
beta_start=0.00085,
num_train_timesteps=1000,
prediction_type='epsilon',
set_alpha_to_one=True,
clip_sample=False,
thresholding=False,
steps_offset=1)
model = dict(
type='AnimateDiff',
vae=dict(
type='AutoencoderKL',
from_pretrained=stable_diffusion_v15_url,
subfolder='vae'),
unet=dict(
type='UNet3DConditionMotionModel',
unet_use_cross_frame_attention=False,
unet_use_temporal_attention=False,
use_motion_module=True,
motion_module_resolutions=[1, 2, 4, 8],
motion_module_mid_block=False,
motion_module_decoder_only=False,
motion_module_type='Vanilla',
motion_module_kwargs=dict(
num_attention_heads=8,
num_transformer_block=1,
attention_block_types=['Temporal_Self', 'Temporal_Self'],
temporal_position_encoding=True,
temporal_position_encoding_max_len=24,
temporal_attention_dim_div=1),
subfolder='unet',
from_pretrained=stable_diffusion_v15_url),
text_encoder=dict(
type='ClipWrapper',
clip_type='huggingface',
pretrained_model_name_or_path=stable_diffusion_v15_url,
subfolder='text_encoder'),
tokenizer=stable_diffusion_v15_url,
scheduler=diffusion_scheduler,
test_scheduler=diffusion_scheduler,
data_preprocessor=dict(type='DataPreprocessor'),
motion_module_cfg=dict(path=models_path + 'Motion_Module/mm_sd_v14.ckpt'),
dream_booth_lora_cfg=dict(
type='ToonYou',
path=models_path + 'DreamBooth_LoRA/toonyou_beta3.safetensors',
steps=25,
guidance_scale=7.5))