-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathconversion_data.py
58 lines (46 loc) · 1.84 KB
/
conversion_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import multiprocessing as mp
import click
import nibabel as nib
import numpy as np
from pathlib2 import Path
from dataset import KiTS19
@click.command()
@click.option('-d', '--data', help='kits19 data path',
type=click.Path(exists=True, dir_okay=True, resolve_path=True), required=True)
@click.option('-o', '--output', help='output npy file path',
type=click.Path(dir_okay=True, resolve_path=True), required=True)
def conversion_all(data, output):
data = Path(data)
output = Path(output)
cases = sorted([d for d in data.iterdir() if d.is_dir()])
pool = mp.Pool()
pool.map(conversion, zip(cases, [output] * len(cases)))
pool.close()
pool.join()
def conversion(data):
case, output = data
vol_nii = nib.load(str(case / 'imaging.nii.gz'))
vol = vol_nii.get_data()
vol = KiTS19.normalize(vol)
imaging_dir = output / case.name / 'imaging'
if not imaging_dir.exists():
imaging_dir.mkdir(parents=True)
if len(list(imaging_dir.glob('*.npy'))) != vol.shape[0]:
for i in range(vol.shape[0]):
np.save(str(imaging_dir / f'{i:03}.npy'), vol[i])
segmentation_file = case / 'segmentation.nii.gz'
if segmentation_file.exists():
seg = nib.load(str(case / 'segmentation.nii.gz')).get_data()
segmentation_dir = output / case.name / 'segmentation'
if not segmentation_dir.exists():
segmentation_dir.mkdir(parents=True)
if len(list(segmentation_dir.glob('*.npy'))) != seg.shape[0]:
for i in range(seg.shape[0]):
np.save(str(segmentation_dir / f'{i:03}.npy'), seg[i])
affine_dir = output / case.name
if not affine_dir.exists():
affine_dir.mkdir(parents=True)
affine = vol_nii.affine
np.save(str(affine_dir / 'affine.npy'), affine)
if __name__ == '__main__':
conversion_all()