-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpypath.py
executable file
·139 lines (96 loc) · 5.53 KB
/
pypath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python
import argparse
from pdb.read import PDBRead
from pdb.write import PDBWrite, PDBTrajectoryWrite
from parameter.constants import Constant
from parameter.input_parameters import Parameters
from pdb.align import Align
from path.hessian import BuildHessian
from path.thermo import ThermoDynamics
from path.dynamics import Time, Transition
from report.length_check import LengthCheck
from report.fileprint import FilePrint
from report.atom_check import AtomCheck
import scipy.linalg as sp
import numpy as np
import time
start_time = time.time()
parser = argparse.ArgumentParser(
description='PATH algorithm - Compute the most probable path connecting two equilibrium states of a biomolecule')
parser.add_argument('-start', metavar='', required=True, help='Initial equilibrium state [PDB file] [Required]')
parser.add_argument('-end', metavar='', required=True, help='Final equilibrium state [PDB file] [Required]')
parser.add_argument('-nconf', metavar='', default=3, type=int,
help='The number of conformations in the trajectory [default: 3]')
parser.add_argument('-calpha', action='store_true',
help='If only C-alpha atoms are to be used in the simulation [default: all atom]')
parser.add_argument('-torsion', action='store_true',
help='If torsion potential should be included in the all atom potential [default: all atom anm]')
parser.add_argument('-eval', metavar='', help='print eigenvalues and eigenvectors to file')
args = parser.parse_args()
if __name__ == '__main__':
parameters = Parameters(args)
constant = Constant()
file_print = FilePrint()
####Reading end states####
pdb_left = PDBRead(args.start, parameters.c_alpha)
pdb_right = PDBRead(args.end, parameters.c_alpha)
print('Coordinates have been read\n')
LengthCheck(pdb_left.natoms, pdb_right.natoms)
AtomCheck(pdb_left, parameters.c_alpha)
AtomCheck(pdb_right, parameters.c_alpha)
####Aligning the end states####
align = Align(pdb_left.coord, pdb_right.coord)
aligned_left = align.static
aligned_right = align.moving
flog = open('path-log', 'w')
flog.write('Initial state = %s\n\n' % pdb_left.name)
flog.write('Final state = %s\n\n' % pdb_right.name)
flog.write('The RMSD between the two structures is %f\n\n' % align.rms)
####Building Hessian matrices####
build_hessian = BuildHessian()
print('@> Computing Hessian matrices.\n')
hessian_left = build_hessian.hessian(aligned_left, pdb_left, parameters.c_alpha, parameters.torsion)
hessian_right = build_hessian.hessian(aligned_right, pdb_right, parameters.c_alpha, parameters.torsion)
print('\n@> The Hessian matrices have been computed.\n')
####Thermodynamics####
thermo = ThermoDynamics()
work_endpoint = thermo.work(aligned_left, aligned_right)
energy_left = thermo.energy(hessian_left, work_endpoint)
energy_right = thermo.energy(hessian_right, work_endpoint)
flog.write('Energy left = %2.3f\n\n' % energy_left)
flog.write('Energy right = %2.3f\n\n' % energy_right)
####Eigen decomposition####
eval_left, evec_left = sp.eigh(hessian_left, eigvals=(0, (pdb_left.natoms * constant.dim) - 1))
eval_right, evec_right = sp.eigh(hessian_right, eigvals=(0, (pdb_right.natoms * constant.dim) - 1))
print('@> The Eigenvalues and the Eigenvectors have been computed\n')
print('@> Number of modes: %d\n' % (constant.dim * pdb_left.natoms))
if parameters.eval:
eval_fname = args.eval
file_print.print_array(eval_left, eval_fname + '_eval_left')
file_print.print_array(eval_right, eval_fname + '_eval_right')
file_print.print_multi_array(evec_left, eval_fname + '_evec_left')
file_print.print_multi_array(evec_right, eval_fname + '_evec_right')
path_time = Time()
####Transition####
tbar_left, force_constant_left = path_time.time_to_transition_state(eval_left)
tbar_right, force_constant_right = path_time.time_to_transition_state(eval_right)
t_series, energy_series = path_time.time_steps(tbar_left, tbar_right, force_constant_left, force_constant_right,
energy_left, energy_right, parameters.n_conf)
print('@> Computing transition state and trajectory.\n')
transition = Transition(tbar_left, tbar_right, force_constant_left, force_constant_right, eval_left,
eval_right, evec_left, evec_right, aligned_left, aligned_right, t_series,
pdb_left.natoms)
energy_left = thermo.energy(hessian_left, transition.work_left)
energy_right = thermo.energy(hessian_right, transition.work_right)
flog.write('The difference in energy between the two wells is %2.3f\n' % float(energy_right - energy_left))
flog.write('\ntbar left = %.3f\n' % tbar_left)
flog.write('\ntbar right = %.3f\n' % tbar_right)
flog.write('\nLeft Action: %+2.3f\n' % transition.action_left)
flog.write('\nRight Action: %+2.3f\n' % transition.action_right)
flog.write('\nTotal Action: %+2.3f\n' % (transition.action_left + transition.action_right))
####Printing transition state and trajectory####
PDBWrite(transition.xbar.reshape(pdb_left.natoms, constant.dim), pdb_left, 'trans.pdb')
PDBTrajectoryWrite(transition.trajectory_coord.reshape(parameters.n_conf, pdb_left.natoms, constant.dim), pdb_left,
'trajectory.pdb')
file_print.print_multi_array(np.column_stack((t_series, energy_series)), 'path-energy')
print('\nTotal time taken %2.3fs\n' % (time.time() - start_time))