-
Notifications
You must be signed in to change notification settings - Fork 2
/
vis.py
271 lines (216 loc) · 9.12 KB
/
vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import numpy as np
from utils.tsne import tsne
import matplotlib as mpl
# mpl.use('TkAgg')
mpl.use('Agg')
import matplotlib.pyplot as plt
def vis_tsne_multiclass(x, y, destpath):
x_embed = tsne(x, no_dims=2, max_iter=500)
y2idx = {}
idx2color = {}
y_new = []
cnt = 0
for i in y:
if i not in y2idx:
y2idx[i] = cnt
idx2color[cnt] = np.random.choice(range(256), size=3) / 256
cnt = cnt + 1
y_new.append(y2idx[i])
y_new = np.array(y_new)
plt.figure()
for i in range(cnt):
plt.scatter(x_embed[y_new == i, 0], x_embed[y_new == i, 1], edgecolors='none', marker='o', facecolors=idx2color[i], s=5)
plt.xticks([])
plt.yticks([])
# plt.title('tsne visualization', fontdict={'fontsize': 25})
plt.savefig(destpath, bbox_inches='tight', dpi=600)
plt.close('all')
return None
def vis_tsne_multiclass_means(x, y, mu, destpath, y_pred=None, destpath_correct=None):
n = x.shape[0]
x = np.concatenate([x, mu], axis=0)
x_embed = tsne(x, no_dims=2, max_iter=500)
mu_embed = x_embed[n:, :]
x_embed = x_embed[:n, :]
y2idx = {}
idx2color = {}
y_new = []
cnt = 0
for i in y:
if i not in y2idx:
y2idx[i] = cnt
idx2color[cnt] = np.random.choice(range(256), size=3) / 256
cnt = cnt + 1
y_new.append(y2idx[i])
y_new = np.array(y_new)
plt.figure()
for i in range(cnt):
plt.scatter(x_embed[y_new == i, 0], x_embed[y_new == i, 1], edgecolors='none', marker='o', facecolors=idx2color[i], s=5)
plt.scatter(mu_embed[:, 0], mu_embed[:, 1], edgecolors='tab:orange', marker='+', facecolors='tab:orange', s=30)
# plt.scatter(mu_embed[:, 0], mu_embed[:, 1], edgecolors='k', marker='*', facecolors='tab:purple', s=30)
plt.xticks([])
plt.yticks([])
# plt.title('tsne visualization', fontdict={'fontsize': 25})
plt.savefig(destpath, bbox_inches='tight', dpi=600)
plt.close('all')
if y_pred is not None and destpath_correct is not None:
correct_label = y == y_pred
plt.figure()
plt.scatter(x_embed[correct_label, 0], x_embed[correct_label, 1], edgecolors='none', marker='o', facecolors='tab:blue', s=5)
plt.scatter(x_embed[(~correct_label), 0], x_embed[(~correct_label), 1], edgecolors='none', marker='o', facecolors='tab:red', s=5)
plt.scatter(mu_embed[:, 0], mu_embed[:, 1], edgecolors='tab:orange', marker='+', facecolors='tab:orange', s=30)
plt.xticks([])
plt.yticks([])
# plt.title('tsne visualization', fontdict={'fontsize': 25})
plt.savefig(destpath_correct, bbox_inches='tight', dpi=600)
plt.close('all')
return None
def vis_tsne_multiclass_means_new(x, y, mu_z, mu_y, destpath, y_pred=None, destpath_correct=None):
n = x.shape[0]
k = mu_z.shape[0]
x = np.concatenate([x, mu_z, mu_y], axis=0)
x_embed = tsne(x, no_dims=2, max_iter=500)
mu_z_embed = x_embed[n:(n + k), :]
mu_y_embed = x_embed[(n + k):, :]
x_embed = x_embed[:n, :]
y2idx = {}
idx2color = {}
y_new = []
cnt = 0
for i in y:
if i not in y2idx:
y2idx[i] = cnt
idx2color[cnt] = np.random.choice(range(256), size=3) / 256
cnt = cnt + 1
y_new.append(y2idx[i])
y_new = np.array(y_new)
plt.figure()
for i in range(cnt):
plt.scatter(x_embed[y_new == i, 0], x_embed[y_new == i, 1], edgecolors='none', marker='o', facecolors=idx2color[i], s=5)
plt.scatter(mu_z_embed[:, 0], mu_z_embed[:, 1], edgecolors='tab:orange', marker='+', facecolors='tab:orange', s=30)
plt.scatter(mu_y_embed[:, 0], mu_y_embed[:, 1], edgecolors='k', marker='*', facecolors='tab:purple', s=30)
plt.xticks([])
plt.yticks([])
# plt.title('tsne visualization', fontdict={'fontsize': 25})
plt.savefig(destpath, bbox_inches='tight', dpi=600)
plt.close('all')
if y_pred is not None and destpath_correct is not None:
correct_label = y == y_pred
plt.figure()
plt.scatter(x_embed[correct_label, 0], x_embed[correct_label, 1], edgecolors='none', marker='o', facecolors='tab:blue', s=5)
plt.scatter(x_embed[(~correct_label), 0], x_embed[(~correct_label), 1], edgecolors='none', marker='o', facecolors='tab:red', s=5)
plt.scatter(mu_z_embed[:, 0], mu_z_embed[:, 1], edgecolors='tab:orange', marker='+', facecolors='tab:orange', s=30)
plt.scatter(mu_y_embed[:, 0], mu_y_embed[:, 1], edgecolors='k', marker='*', facecolors='tab:purple', s=30)
plt.xticks([])
plt.yticks([])
# plt.title('tsne visualization', fontdict={'fontsize': 25})
plt.savefig(destpath_correct, bbox_inches='tight', dpi=600)
plt.close('all')
return None
def draw_tsne_multiclass(x, y, num_class, destpath):
x_embed = tsne(x, no_dims=2, max_iter=500)
y2color = ['tab:blue', 'tab:red', 'tab:green', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive',
'tab:cyan', 'darkgreen', 'lightgreen', 'goldenrod', 'peru', 'tan', 'slategrey', 'teal', 'lightsteelblue']
plt.figure()
for i in range(num_class):
plt.scatter(x_embed[y == i, 0], x_embed[y == i, 1], edgecolors='none', marker='o', facecolors=y2color[i], s=15, alpha=0.7)
plt.xticks([])
plt.yticks([])
# plt.title('tsne visualization', fontdict={'fontsize': 25})
plt.savefig(destpath, bbox_inches='tight', dpi=600)
plt.close('all')
return None
def draw_tsne_multiclass_means(x, y, mu, num_class, destpath):
n = x.shape[0]
x = np.concatenate([x, mu], axis=0)
x_embed = tsne(x, no_dims=2, max_iter=500)
mu_embed = x_embed[n:, :]
x_embed = x_embed[:n, :]
y2color = ['tab:blue', 'tab:red', 'tab:green', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive',
'tab:cyan', 'darkgreen', 'lightgreen', 'goldenrod', 'peru', 'tan', 'slategrey', 'teal', 'lightsteelblue']
plt.figure()
for i in range(num_class):
plt.scatter(x_embed[y == i, 0], x_embed[y == i, 1], edgecolors='none', marker='o', facecolors=y2color[i], s=15, alpha=0.7)
plt.scatter(mu_embed[:, 0], mu_embed[:, 1], edgecolors='k', marker='*', facecolors='khaki', s=80)
plt.xticks([])
plt.yticks([])
# plt.title('tsne visualization', fontdict={'fontsize': 25})
plt.savefig(destpath, bbox_inches='tight', dpi=600)
plt.close('all')
return None
def draw_tsne_multiclass_means_new(x, y, mu_z, mu_y, num_class, destpath):
n = x.shape[0]
k = mu_z.shape[0]
x = np.concatenate([x, mu_z, mu_y], axis=0)
x_embed = tsne(x, no_dims=2, max_iter=500)
mu_z_embed = x_embed[n:(n + k), :]
mu_y_embed = x_embed[(n + k):, :]
x_embed = x_embed[:n, :]
y2color = ['tab:blue', 'tab:red', 'tab:green', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive',
'tab:cyan', 'darkgreen', 'lightgreen', 'goldenrod', 'peru', 'tan', 'slategrey', 'teal', 'lightsteelblue']
plt.figure()
for i in range(num_class):
plt.scatter(x_embed[y == i, 0], x_embed[y == i, 1], edgecolors='none', marker='o', facecolors=y2color[i], s=15, alpha=0.7)
plt.scatter(mu_z_embed[:, 0], mu_z_embed[:, 1], marker='+', facecolors='tab:orange', s=80)
plt.scatter(mu_y_embed[:, 0], mu_y_embed[:, 1], edgecolors='k', marker='*', facecolors='khaki', s=80)
plt.xticks([])
plt.yticks([])
# plt.title('tsne visualization', fontdict={'fontsize': 25})
plt.savefig(destpath, bbox_inches='tight', dpi=600)
plt.close('all')
return None
def eval_reliability_diagram(y_pred, y_true, probs, num_bins, destpath):
'''
:param y_pred:
:param y_true:
:param probs:
:param num_bins:
:param destpath:
:return:
'''
n = len(y_true)
intv = 1 / num_bins
intvs = np.arange(0, 1, intv)
acc = []
conf = []
bs = []
for i in range(num_bins):
lb = intvs[i]
ub = lb + intv
if i == 0:
idx = np.logical_and(probs >= lb, probs <= ub)
else:
idx = np.logical_and(probs > lb, probs <= ub)
y_pred_i = y_pred[idx]
y_true_i = y_true[idx]
probs_i = probs[idx]
bs_i = idx.sum()
if bs_i == 0:
acc.append(0)
conf.append(0)
bs.append(0)
else:
acc_i = (y_pred_i == y_true_i).sum() / bs_i
conf_i = probs_i.sum() / bs_i
acc.append(acc_i)
conf.append(conf_i)
bs.append(bs_i)
acc = np.array(acc)
conf = np.array(conf)
bs = np.array(bs)
ece = (np.abs(acc - conf) * (bs / n)).sum()
mce = (np.abs(acc - conf)).max()
plt.figure()
plt.bar(intvs, acc, width=intv, align='edge', color='b', edgecolor='black')
plt.plot([0, 1], [0, 1], color='navy', lw=1, linestyle='-.')
# plt.xticks(intvs, intvs, rotation=90, ha='center')
plt.title('reliability diagram')
plt.xlim([0, 1])
plt.ylim([0, 1])
ax = plt.gca()
ax.tick_params(axis='x', labelsize=5)
ax.tick_params(axis='y', labelsize=5)
# for i, v in enumerate(acc):
# plt.text(i - 0.3, v, '%.4f' % v, color='black', fontsize=5)
plt.savefig(destpath, bbox_inches='tight', dpi=600)
return ece, mce, acc, conf, bs