-
Notifications
You must be signed in to change notification settings - Fork 600
/
Copy pathfaceDetection.py
56 lines (37 loc) · 1.37 KB
/
faceDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import cv2
import mediapipe as mp
import time
faceDetector = mp.solutions.face_detection
drawing = mp.solutions.drawing_utils
# For webcam input:
cap = cv2.VideoCapture(0)
with faceDetector.FaceDetection(
min_detection_confidence=0.5) as face_detection:
while cap.isOpened():
success, image = cap.read()
start = time.time()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# Convert the BGR image to RGB.
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
results = face_detection.process(image)
# Draw the face detection annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
if results.detections:
for id, detection in enumerate(results.detections):
drawing.draw_detection(image, detection)
end = time.time()
totalTime = end - start
fps = 1 / totalTime
print("FPS: ", fps)
cv2.putText(image, f'FPS: {int(fps)}', (20,70), cv2.FONT_HERSHEY_SIMPLEX, 2, (0,255,0), 2)
cv2.imshow('MediaPipe Face Detection', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()