-
Notifications
You must be signed in to change notification settings - Fork 0
/
ObjectCounter.py
158 lines (128 loc) · 6.34 KB
/
ObjectCounter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
'''
Object Counter class.
'''
# pylint: disable=missing-class-docstring,missing-function-docstring,invalid-name
import multiprocessing
import cv2
from joblib import Parallel, delayed
from tracker import add_new_blobs, remove_duplicates, update_blob_tracker
from detectors.detector import get_bounding_boxes
from util.detection_roi import get_roi_frame, draw_roi
from util.logger import get_logger
from counter import attempt_count
logger = get_logger()
NUM_CORES = multiprocessing.cpu_count()
class ObjectCounter():
def __init__(self, initial_frame, detector, tracker, droi, show_droi, mcdf, mctf, di, counting_lines, show_counts, hud_color):
self.frame = initial_frame # current frame of video
self.detector = detector
self.tracker = tracker
self.droi = droi # detection region of interest
self.show_droi = show_droi
self.mcdf = mcdf # maximum consecutive detection failures
self.mctf = mctf # maximum consecutive tracking failures
self.detection_interval = di
self.counting_lines = counting_lines
self.blobs = {}
self.f_height, self.f_width, _ = self.frame.shape
self.frame_count = 0 # number of frames since last detection
self.counts = {counting_line['label']: {} for counting_line in counting_lines} # counts of objects by type for each counting line
self.show_counts = show_counts
self.hud_color = hud_color
# create blobs from initial frame
droi_frame = get_roi_frame(self.frame, self.droi)
_bounding_boxes, _classes, _confidences = get_bounding_boxes(droi_frame, self.detector)
self.blobs = add_new_blobs(_bounding_boxes, _classes, _confidences, self.blobs, self.frame, self.tracker, self.mcdf)
def get_counts(self):
'''
Format `self.counts` i.e
From:
{
A: {car: 1, bus: 2},
B: {car: 4, bicycle: 3},
}
To:
{
total_count: 10,
classes: [{class: car, count: 5}, {class: bus, count: 2}, {class: bicycle, count: 3}],
lines: [{line: A, count: 3}, {line: B, count: 7}]
lines_by_class: [{line: A, class: car, count: 1}, {line: A, class: bus, count: 2}, {line: B, class: car, count: 4}, {line: B, class: bicycle, count: 3}]
}
'''
classes = []
lines = []
lines_by_class = [] # flattened self.counts
total_count = 0
class_counts = {}
for line_label, counts_by_class in self.counts.items():
line_count = 0
for class_name, class_count in counts_by_class.items():
# classes
if class_name in class_counts:
class_counts[class_name] += class_count
else:
class_counts[class_name] = class_count
# lines
line_count += class_count
# lines by class
lines_by_class.append({'line': line_label, 'class': class_name, 'count': class_count})
lines.append({'line': line_label, 'count': line_count})
total_count += line_count
for class_name, class_count in class_counts.items():
classes.append({'class': class_name, 'count': class_count})
return {'total_count': total_count, 'classes': classes, 'lines': lines, 'lines_by_class': lines_by_class}
def get_blobs(self):
return [{'id': blob_id, 'details': vars(blob)} for blob_id, blob in self.blobs.items()]
def count(self, frame):
self.frame = frame
blobs_list = list(self.blobs.items())
# update blob trackers
blobs_list = Parallel(n_jobs=NUM_CORES, prefer='threads')(
delayed(update_blob_tracker)(blob, blob_id, self.frame) for blob_id, blob in blobs_list
)
self.blobs = dict(blobs_list)
for blob_id, blob in blobs_list:
# count object if it has crossed a counting line
blob, self.counts = attempt_count(blob, blob_id, self.counting_lines, self.counts)
self.blobs[blob_id] = blob
# remove blob if it has reached the limit for tracking failures
if blob.num_consecutive_tracking_failures >= self.mctf:
del self.blobs[blob_id]
if self.frame_count >= self.detection_interval:
# rerun detection
droi_frame = get_roi_frame(self.frame, self.droi)
_bounding_boxes, _classes, _confidences = get_bounding_boxes(droi_frame, self.detector)
self.blobs = add_new_blobs(_bounding_boxes, _classes, _confidences, self.blobs, self.frame, self.tracker, self.mcdf)
self.blobs = remove_duplicates(self.blobs)
self.frame_count = 0
self.frame_count += 1
def visualize(self):
frame = self.frame
font = cv2.FONT_HERSHEY_DUPLEX
line_type = cv2.LINE_AA
# draw and label blob bounding boxes
for _id, blob in self.blobs.items():
(x, y, w, h) = [int(v) for v in blob.bounding_box]
cv2.rectangle(frame, (x, y), (x + w, y + h), self.hud_color, 2)
object_label = 'I: ' + _id[:8] \
if blob.type is None \
else 'I: {0}, T: {1} ({2})'.format(_id[:8], blob.type, str(blob.type_confidence)[:4])
cv2.putText(frame, object_label, (x, y - 5), font, 1, self.hud_color, 2, line_type)
# draw counting lines
for counting_line in self.counting_lines:
cv2.line(frame, counting_line['line'][0], counting_line['line'][1], self.hud_color, 3)
cl_label_origin = (counting_line['line'][0][0], counting_line['line'][0][1] + 35)
cv2.putText(frame, counting_line['label'], cl_label_origin, font, 1, self.hud_color, 2, line_type)
# show detection roi
if self.show_droi:
frame = draw_roi(frame, self.droi)
# show counts
if self.show_counts:
offset = 1
for line, objects in self.counts.items():
cv2.putText(frame, line, (10, 40 * offset), font, 1, self.hud_color, 2, line_type)
for label, count in objects.items():
offset += 1
cv2.putText(frame, "{}: {}".format(label, count), (10, 40 * offset), font, 1, self.hud_color, 2, line_type)
offset += 2
return frame