-
Notifications
You must be signed in to change notification settings - Fork 1
/
Main3DCASSI.m
259 lines (235 loc) · 7.1 KB
/
Main3DCASSI.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Paper: Adaptive Multisensor Acquisition via Spatial Contextual Information
% for Compressive Spectral Image Classification
%
% Fig 2.
%
% Author:
% Nelson Eduardo Díaz Díaz,
% Universidad Industrial de Santander, Bucaramanga, Colombia
% e-mail: nelson.diaz@saber.uis.edu.co
% Date Octuber, 2020
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear
clc
close all
addpath(genpath('./Util'));
addpath(genpath('./Util2'));
addpath(genpath('./Data'));
addpath(genpath('./src'));
%% Parameters
Kms = [2 3 4 6]; % vector of number of shots multispectral
Khs = [8 12 16 24]; %number of shots hyperspectral
nm = 4;
shot1 = Kms(nm); % number of multispectral snapshot
shot2 = Khs(nm); % number of hiperspectral snapshot
%% Loading data
md = 14; % median filter parameter
adaptive = 1;
dataset2 = 2; % 0 Pavia, 1 Salinas Valley, 2 Indian pines, 3 Hen
if(dataset2 == 0)
%% Pavia Dataset
load('PaviaU.mat');
L1 = 96;
L2 = 24;
idx = round(linspace(1,size(paviaU,3),L2));
Io = mat2gray(paviaU(1:end,1:end,idx));
MS = Io;
idx = round(linspace(1,size(paviaU,3),L1));
Io = paviaU(1:end,1:end,idx);
for i=1:L1
HS(:,:,i)=imresize(Io(:,:,i),0.25);
end
clear paviaU;
load('PaviaU_gt.mat');
%load('../Data/Salinas_gt.mat');
ground_truth = paviaU_gt(1:end,1:end);
clear paviaU_gt;
gt = ground_truth(1:end,1:end);
R = sum(MS(1:end,1:end,1:8),3);
G = sum(MS(1:end,1:end,9:16),3);
B = sum(MS(1:end,1:end,17:24),3);
RGB(:,:,1) = B;
RGB(:,:,2) = G;
RGB(:,:,3) = R;
RGB = RGB./max(RGB(:));
RGB1 = imresize(RGB,1);
RGB2 = imresize(RGB,0.25);
gt1 = imresize(gt,1,'nearest');
gt2 = imresize(gt,0.25,'nearest');
nc = max(gt(:));
elseif(dataset2 ==1)
%% Salinas Valley
load('Salinas_corrected.mat');
L1 = 96;
L2 = 24;
idx = round(linspace(1,size(salinas_corrected,3),L2));
MS = mat2gray(salinas_corrected(1:end,1:end,idx));
idx = round(linspace(1,size(salinas_corrected,3),L1));
Io = salinas_corrected(1:end,1:end,idx);
for i=1:L1
HS(:,:,i)=imresize(Io(:,:,i),0.25);
end
clear salinas_corrected;
load('Salinas_gt');
gt = salinas_gt(1:end,1:end);
R = sum(MS(1:end,1:end,1:8),3);
G = sum(MS(1:end,1:end,9:16),3);
B = sum(MS(1:end,1:end,17:24),3);
RGB(:,:,1) = B;
RGB(:,:,2) = G;
RGB(:,:,3) = R;
RGB = RGB./max(RGB(:));
RGB1 = imresize(RGB,1);
RGB2 = imresize(RGB,0.25);
gt1 = imresize(gt,1,'nearest');
gt2 = imresize(gt,0.25,'nearest');
nc = max(gt(:));
elseif(dataset2 ==2)
%% Pavia Dataset
load('Indian_pines_corrected.mat');
L1 = 96;
L2 = 24;
cube = indian_pines_corrected;
idx = round(linspace(1,size(cube,3),L2));
Io = mat2gray(cube(1:end,1:end,idx));
MS = Io;
idx = round(linspace(1,size(cube,3),L1));
Io = cube(1:end,1:end,idx);
for i=1:L1
HS(:,:,i)=imresize(Io(:,:,i),0.25);
end
clear indian_pines_corrected;
clear cube;
load('Indian_pines_gt.mat');
gt = indian_pines_gt(1:end,1:end);
R = sum(MS(1:145,1:145,1:8),3);
G = sum(MS(1:145,1:145,9:16),3);
B = sum(MS(1:145,1:145,17:24),3);
RGB(:,:,1) = B;
RGB(:,:,2) = G;
RGB(:,:,3) = R;
RGB = RGB./max(RGB(:));
RGB1 = imresize(RGB,1);
RGB2 = imresize(RGB,0.25);
gt1 = imresize(gt,1,'nearest');
gt2 = imresize(gt,0.25,'nearest');
nc = max(gt(:));
elseif(dataset2 == 3)
load('Hen_FullSpectral.mat');
%load('Prism');
L1 = 96;
L2 = 24;
cube = dataset;
idx = round(linspace(1,size(cube,3),L2));
Io = mat2gray(cube(1:end,1:end,idx));
MS = Io;
idx = round(linspace(1,size(cube,3),L1));
Io = cube(1:end,1:end,idx);
for i=1:L1
HS(:,:,i)=imresize(dataset(:,:,i),0.25);
end
clear dataset;
clear cube;
R = sum(MS(:,:,1:8),3);
G = sum(MS(:,:,9:16),3);
B = sum(MS(:,:,17:24),3);
RGB(:,:,1) = B;
RGB(:,:,2) = G;
RGB(:,:,3) = R;
RGB = RGB./max(RGB(:));
imagesc(RGB.^.25)
RGB1 = imresize(RGB,1);
RGB2 = imresize(RGB,0.25);
load('Hen-gt.mat')
gt1 = imresize(gt,0.5,'nearest');
gt2 = imresize(gt,0.125,'nearest');
nc = max(gt(:));
else
%% Pony Dataset
load('Pony-MS-gt.mat')
R = sum(MS(:,:,1:4),3);
G = sum(MS(:,:,5:8),3);
B = sum(MS(:,:,9:12),3);
RGB(:,:,1) = B;
RGB(:,:,2) = G;
RGB(:,:,3) = R;
RGB = RGB./max(RGB(:));
RGB = RGB(209:209+511,280:280+511,:);
gt = gt(209:209+511,280:280+511,:);
RGB1 = imresize(RGB,0.5,'nearest');
RGB2 = imresize(RGB,0.125,'nearest');
%imagesc(RGB)
end
M2 = size(MS,1);
N2 = size(MS,2);
M1 = size(HS,1);
N1 = size(HS,2);
L1 = 96;
L2 = 24;
YH = zeros(M1,N1,shot2);
YM = zeros(M2,N2,shot1);
[Order_fil1,G1] = matchFilter(gt1,MS,shot1);
G1(1:round(size(G1,1)/3),1) = 1; % Capture first band of RGB
[Order_fil2,G2] = matchFilter(gt2,HS,shot2);
figure('Name',"Filters of Multispectral and Hyperspectral Arm")
colormap('jet')
subplot(1,2,1),imagesc(G1),title('Complementary Multispectral filters')
subplot(1,2,2),imagesc(G2),title('Complementary Hyperspectral filters')
if(adaptive == 0)
T1 = rand(M2,N2,L2,shot1)>0.5;
T2 = rand(M1,N1,L1,shot2)>0.5;
else
[T1] = multisnapshot2(RGB1,M2,N2,L2,shot1,Order_fil1,nc,G1);
[T2] = hypersnapshot(RGB2,M1,N1,L1,shot2,Order_fil2,nc,G2);
end
figure('Name',"Coded apertures in the Multispectral Arm")
showCodedApertures(T1);
figure('Name',"Coded apertures in the Hyperspectral Arm")
showCodedApertures(T2);
size(T1)
size(T2)
% Multispectral snapshots
for i=1:shot1
t1 = T1(:,:,:,i);
YM(:,:,i) = sum(t1.*MS,3);
%if(i==1 && adaptive ==1)
% YM(:,:,1)=RGB(:,:,2);
%end
if(adaptive==1)
YM(:,:,i) = medfilt2(YM(:,:,i),[md md]);
end
end
ym = reshape(YM,[M2*N2,shot1]);
% Hyperspectral snapshots
for i=1:shot2
t2 = T2(:,:,:,i);
YH(:,:,i) = sum(t2.*HS,3);
YH1(:,:,i) = imresize(YH(:,:,i),[M2, N2]);
if(adaptive==1)
YH1(:,:,i) = medfilt2(YH1(:,:,i),[md md]);
end
end
figure('Name',"Example of Compressive Measurements")
subplot(1,2,1),imagesc(YM(:,:,end)),title('Multispectral Compressive Measurement')
subplot(1,2,2),imagesc(YH1(:,:,end)),title('Interpolated Hyperspectral Compressive Measurement')
yh = reshape(YH1,[M2*N2,shot2]);
yt = [ym yh];
training_rate = 0.1;
[training_indexes,test_indexes] = classification_indexes(gt1,training_rate);
T_classes =gt1(training_indexes);
feat_training = yt(training_indexes,:);
feat_test = yt(test_indexes,:);
t = templateSVM('KernelFunction','poly','Standardize',1,'Kernelscale','auto');
MdlSV1 = fitcecoc(feat_training,T_classes,'Learners',t);
yHat = predict(MdlSV1,feat_test);
gtHat = zeros(M2,N2);
gtHat(training_indexes) = T_classes;
gtHat(test_indexes) = yHat;
figure(3)
figure('Name',"Classification Maps")
subplot(1,2,1),imagesc(gt1),title('groundtruth')
subplot(1,2,2),imagesc(gtHat),title('Proposed Algorithm')
[OA1,AA1,kappa1] = compute_accuracy(uint8(gt1(test_indexes)),uint8(gtHat(test_indexes)));
disp("OA= "+num2str(OA1)+" AA= "+num2str(AA1)+" kappa= "+num2str(kappa1))
save('Tensors','T1','T2')