forked from james-owen-ryan/talktown
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpersonality.py
175 lines (154 loc) · 7.47 KB
/
personality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import random
class Personality(object):
"""A person's personality."""
def __init__(self, person):
"""Initialize a Personality object."""
self.person = person
self.openness_to_experience = self._determine_personality_feature(feature_type="openness")
self.conscientiousness = self._determine_personality_feature(feature_type="conscientiousness")
self.extroversion = self._determine_personality_feature(feature_type="extroversion")
self.agreeableness = self._determine_personality_feature(feature_type="agreeableness")
self.neuroticism = self._determine_personality_feature(feature_type="neuroticism")
self.interest_in_history = self._determine_interest_in_history()
# Binned scores used as convenient personality hooks during Expressionist authoring
config = person.sim.config
if self.openness_to_experience > config.threshold_for_high_binned_personality_score:
self.high_o, self.low_o = True, False
elif self.openness_to_experience < config.threshold_for_low_binned_personality_score:
self.high_o, self.low_o = False, True
else:
self.high_o, self.low_o = False, False
if self.conscientiousness > config.threshold_for_high_binned_personality_score:
self.high_c, self.low_c = True, False
elif self.conscientiousness < config.threshold_for_low_binned_personality_score:
self.high_c, self.low_c = False, True
else:
self.high_c, self.low_c = False, False
if self.extroversion > config.threshold_for_high_binned_personality_score:
self.high_e, self.low_e = True, False
elif self.extroversion < config.threshold_for_low_binned_personality_score:
self.high_e, self.low_e = False, True
else:
self.high_e, self.low_e = False, False
if self.agreeableness > config.threshold_for_high_binned_personality_score:
self.high_a, self.low_a = True, False
elif self.agreeableness < config.threshold_for_low_binned_personality_score:
self.high_a, self.low_a = False, True
else:
self.high_a, self.low_a = False, False
if self.neuroticism > config.threshold_for_high_binned_personality_score:
self.high_n, self.low_n = True, False
elif self.neuroticism < config.threshold_for_low_binned_personality_score:
self.high_n, self.low_n = False, True
else:
self.high_n, self.low_n = False, False
def __str__(self):
"""Return string representation."""
return "Personality of {}".format(self.person.name)
@property
def o(self):
"""Return this person's openness to experience."""
return self.openness_to_experience
@property
def c(self):
"""Return this person's conscientiousness."""
return self.conscientiousness
@property
def e(self):
"""Return this person's extroversion."""
return self.extroversion
@property
def a(self):
"""Return this person's agreeableness."""
return self.agreeableness
@property
def n(self):
"""Return this person's neuroticism."""
return self.neuroticism
@property
def gregarious(self):
"""Return whether this person has a gregarious personality, which is a E+A+N- signal."""
return True if self.high_e and self.high_a and self.low_n else False
@property
def cold(self):
"""Return whether this person has a cold personality, which is a E-A+C+ signal."""
return True if self.low_e and self.high_a and self.high_c else False
def _determine_personality_feature(self, feature_type):
"""Determine a value for a Big Five personality trait."""
config = self.person.sim.config
feature_will_get_inherited = (
self.person.biological_mother and
random.random() < config.big_five_heritability_chance[feature_type]
)
if feature_will_get_inherited:
# Inherit this trait (with slight variance)
takes_after = random.choice([self.person.biological_father, self.person.biological_mother])
feature_value = random.normalvariate(
self._get_a_persons_feature_of_type(person=takes_after, feature_type=feature_type),
config.big_five_inheritance_sd[feature_type]
)
else:
takes_after = None
# Generate from the population mean
feature_value = random.normalvariate(
config.big_five_mean[feature_type], config.big_five_sd[feature_type]
)
if feature_value < config.big_five_floor:
feature_value = config.big_five_floor
elif feature_value > config.big_five_cap:
feature_value = config.big_five_cap
feature_object = Feature(value=feature_value, inherited_from=takes_after)
return feature_object
def _determine_interest_in_history(self):
"""Determine this person's interest in history, given their other personality traits.
In lieu of any actual sources (since I couldn't find any), this is entirely home-cooked
based on my intuitions.
"""
personality_component = (float(self.o)*2 + float(self.c)*0.5 + float(self.a))
chance_component = random.random() * (1.0 if random.random() < 0.5 else -1.0)
# Now divide by 4.5 to get this on the -1 to 1 scale (since -4.5 is the lowest
# possible sum of personality_component+chance_component and 4.5 is the highest)
interest_in_history = (personality_component + chance_component) / 4.5
return interest_in_history
@staticmethod
def _get_a_persons_feature_of_type(person, feature_type):
"""Return this person's value for the given personality feature."""
features = {
"openness": person.personality.openness_to_experience,
"conscientiousness": person.personality.conscientiousness,
"extroversion": person.personality.extroversion,
"agreeableness": person.personality.agreeableness,
"neuroticism": person.personality.neuroticism,
}
return features[feature_type]
def component_str(self, component_letter):
"""Return a short string indicating the value for a personality component."""
component_value = eval('self.{}'.format(component_letter))
if component_value > 0.7:
return 'very high'
elif component_value > 0.4:
return 'high'
elif component_value > 0.1:
return 'somewhat high'
elif component_value > -0.1:
return 'neutral'
elif component_value > -0.4:
return 'somewhat low'
elif component_value > -0.7:
return 'low'
else:
return 'very low'
class Feature(float):
"""A particular personality feature, i.e., a value for a particular personality attribute."""
def __init__(self, value, inherited_from):
"""Initialize a Feature object.
@param value: A float representing the value, on a scale from -1 to 1, for this
particular personality feature.
@param inherited_from: The parent from whom this personality feature was
inherited, if any.
"""
super(Feature, self).__init__()
self.inherited_from = inherited_from
def __new__(cls, value, inherited_from):
"""Do float stuff."""
return float.__new__(cls, value)