-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_preprocess.py
91 lines (72 loc) · 2.86 KB
/
run_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import torch
from src.args import Args
from src.params import Params
from src.system import HolohoverSystem
from src.model_grey import HolohoverModelGrey
from src_preprocess.data import Data
from src_preprocess.preprocess_loadcell import Loadcell
from src_preprocess.preprocess_holohover import PreprocessHolohover
from src_preprocess.plot_loadcell import PlotLoadcell
from src_preprocess.plot_holohover import PlotHolohover
def loadcell(device):
series_name = "signal_20221206" #"signal_20221121"
crop_data = None
crop_exp = None
args = Args(model_type="HolohoverGrey")
params = Params(args=args)
sys = HolohoverSystem(args=args, dev=device)
model = HolohoverModelGrey(args=args, params=params, dev=device)
data = Data(series_name=series_name, crop_data=crop_data, crop_exp=crop_exp)
plot = PlotLoadcell(data=data, show_plots=False, save_dir="plots/preprocessing_forcecell")
pp = Loadcell(data=data, plot=plot, sys=sys, model=model)
pp.cropData()
pp.interpolateU(plot=False)
pp.locSig(trigger_delay=0.5, plot=False)
pp.calcNorm(plot=False)
pp.calcMeanNorm(plot=False)
pp.signal2thrustCoeff(plot=False, verb=False)
pp.thrust2signalCoeff(plot=False, verb=False)
pp.motorTransition(thr_y_final=0.95, plot=True, signal_space=True)
def holohover(device):
series_name = "holohover_20221208" #"holohover_20221130"
crop_data = None
crop_exp = None
args = Args(model_type="HolohoverGrey")
params = Params(args=args)
sys = HolohoverSystem(args=args, dev=device)
model = HolohoverModelGrey(args=args, params=params, dev=device)
data = Data(series_name=series_name, crop_data=crop_data, crop_exp=crop_exp)
plot = PlotHolohover(data=data, show_plots=False, save_plots=True, save_dir="plots/preprocessing_holohover")
pp = PreprocessHolohover(data=data, plot=plot, sys=sys, model=model)
pp.cropData(plot=True)
pp.intermolateU(plot=True)
pp.firstOrderU(tau_up=params.tau_up, tau_dw=params.tau_dw, plot=True)
pp.diffX(plot=True)
pp.alignData(plot=True)
data.save(names=["state", "dynamics", "u"])
def validation(device):
series_name = "validation_20221208"
crop_data = None
crop_exp = 1
args = Args(model_type="HolohoverGrey")
model = HolohoverModelGrey(args=args, dev=device)
data = Data(series_name=series_name, crop_data=crop_data, crop_exp=crop_exp)
plot = PlotHolohover(data=data)
pp = PlotHolohover(data=data, plot=plot, model=model)
pp.cropData(plot=False)
pp.intermolateU(plot=False)
pp.firstOrderU(plot=False)
pp.diffX(plot=False)
pp.alignData(plot=False)
data.saveData()
def main():
if torch.cuda.is_available():
dev = "cuda:0"
else:
dev = "cpu"
device = torch.device(dev)
# loadcell(device)
holohover(device=device)
# validation(device=device)
if __name__ == "__main__":
main()