Skip to content

Latest commit

 

History

History
47 lines (29 loc) · 1 KB

README.md

File metadata and controls

47 lines (29 loc) · 1 KB

BERT-NER-CHINESE

使用 BERT 預訓練模型進行中文 NER 任務。

Dataset

  • cner

Quick Start

1. Prepare your training data and install the package in requirement.txt

2. Fine-tune BERT model

sh tarin.sh

3. Evaluation

sh eval.sh

Experiment

The experimental result of F1-measure:

Eval: 100%|█████████████████████████████████████| 30/30 [00:03<00:00,  8.45it/s]
Average f1 : 0.9666356650437157

Model architectures

BERT (from Google) released with the paper BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.

基本上就是這張圖的 fine-tune 情境:

bert-ner

當兵前無事練習寫的 pytorch BERT-NER 模型,還有許多地方可以加強。