-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenes.cpp
479 lines (412 loc) · 14.5 KB
/
Genes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
#include <string>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <iterator>
#include <algorithm>
#include <limits>
#include <cctype>
#include "Genes.h"
#include "Exceptions.h"
#include "VerbosityLevels.h"
#include "MatrixSize.h"
Genes::~Genes() {
mDnaSpecies.clear();
mDnaGene.clear();
mSiteMultiplicity.clear();
mMapSiteToDnaGene.clear();
mMapSpecieToDnaGene.clear();
mSitesMappingToOriginal.clear();
mMapCodonToPosition.clear();
mCurrentPositions.clear();
}
bool Genes::validCodon(const char *aCodon, bool aRemoveAmbiguous) const {
const std::vector<int> &pos = getPositions(aCodon);
if (pos.empty())
return false; // Invalid codon
if (pos.size() == 1)
return true; // Valid, non ambiguous codon
return !aRemoveAmbiguous; // Ambiguous codon
}
long long Genes::getCodonIdx(std::string aSpecie, size_t aSite) const {
// Find the specie
const unsigned int idx = mMapSpecieToDnaGene.find(aSpecie)->second;
// Access its gene
const char *gene = mDnaGene[idx].c_str();
// Convert the site to the position on the gene
unsigned int position_on_gene = mMapSiteToDnaGene[aSite];
// Get the list of positions for the given codon
const std::vector<int> &pos = getPositions(gene + 3 * position_on_gene);
// Update last decoded set of positions
mCurrentPositions.assign(pos.begin(), pos.end());
// Return -1 if invalid, the position or a negative code summarizing all the
// positions
if (pos.empty())
return -1;
if (pos.size() == 1)
return pos[0];
long long code = 0;
for (size_t i = 0; i < pos.size(); ++i)
code |= (static_cast<long long>(1) << pos[i]);
return -code;
}
void Genes::setLeaveProb(double *aLeaveProbVect) const {
// This extra location aLeaveProbVect[N] will be used to carry the CPV norm to
// revert normalization at the end of the likelihood computation
size_t cnt = mCurrentPositions.size();
if (cnt == 0) {
throw FastCodeMLFatal("Invalid codon found in setLeaveProb.");
} else if (cnt == 1) {
aLeaveProbVect[mCurrentPositions[0]] = 1.;
#ifdef USE_CPV_SCALING
aLeaveProbVect[N] = 1.0;
#endif
} else {
#ifdef USE_CPV_SCALING
double prob = 1. / static_cast<double>(cnt);
for (size_t i = 0; i < cnt; ++i)
aLeaveProbVect[mCurrentPositions[i]] = prob;
aLeaveProbVect[N] = static_cast<double>(
cnt); // Set to 1. to have the CPV initialized to all 1/cnt instead of 1
#else
for (size_t i = 0; i < cnt; ++i)
aLeaveProbVect[i] = 1.; // Set to 1./cnt to have the CPV initialized to
// all 1/cnt instead of 1
#endif
}
}
void Genes::saveCodonsForCount(std::vector<std::vector<unsigned int> > &aCodons,
unsigned int aSiteMultiplicity) const {
// Check if valid translation of the codon
size_t cnt = mCurrentPositions.size();
if (cnt == 0)
throw FastCodeMLFatal("Invalid codon found in saveCodonsForCount.");
// Save the corresponding site multeplicity followed by the codon positions
std::vector<unsigned int> v;
v.reserve(cnt + 1);
v.push_back(aSiteMultiplicity);
for (size_t i = 0; i < cnt; ++i)
v.push_back(static_cast<unsigned int>(mCurrentPositions[i]));
// Add the new array to the array of arrays in output
aCodons.push_back(v);
}
bool Genes::compareCodons(const char *aCodon1, const char *aCodon2) const {
const std::vector<int> &pos1 = getPositions(aCodon1);
const std::vector<int> &pos2 = getPositions(aCodon2);
if (pos1.empty() || pos2.empty())
return false; // Both should be valid
if (pos1.size() != pos2.size())
return false; // They should expand to the same number of positions
for (size_t i = 0; i < pos1.size(); ++i)
if (pos1[i] != pos2[i])
return false; // All positions must be equal
return true;
}
void Genes::checkNameCoherence(const std::vector<std::string> &aNames) const {
// Should at least have the same number of species
if (aNames.size() != mDnaSpecies.size())
throw FastCodeMLFatal("Different number of species in tree and genes.");
// Create correspondence between species names
std::vector<std::string>::const_iterator is1 = aNames.begin();
const std::vector<std::string>::const_iterator end1 = aNames.end();
for (; is1 != end1; ++is1) {
bool found = false;
std::vector<std::string>::const_iterator is2(mDnaSpecies.begin());
const std::vector<std::string>::const_iterator end2(mDnaSpecies.end());
for (; is2 != end2; ++is2) {
if (*is1 == *is2) {
found = true;
break;
}
}
if (!found)
throw FastCodeMLFatal("Mismatch between species in tree and genes.");
}
}
void Genes::readFile(const char *aFilename, bool aCleanData) {
// Read sequences and the corresponding species
loadData(aFilename, mDnaSpecies, mDnaGene);
// Finish postprocessing of the read-in sequences
size_t i, j;
// Get the number of basis, codons and species
size_t nbasis = mDnaGene[0].length();
size_t ncodons = nbasis / 3;
size_t nspecies = mDnaSpecies.size();
// Check for too many sites (in Forest site*0+class is coded in a unsigned
// int)
if (ncodons >= std::numeric_limits<size_t>::max() / 10U) {
std::ostringstream o;
o << "File \"" << aFilename << "\" has too many basis. Max "
<< 3 * std::numeric_limits<size_t>::max() / 10U;
throw FastCodeMLFatal(o);
}
// Inizialize codons multiplicity
std::vector<unsigned int> codon_multiplicity(ncodons, 1);
// Count and remove gaps
int num_gaps = 0;
for (j = 0; j < ncodons; ++j) {
for (i = 0; i < nspecies; ++i) {
const char *p = mDnaGene[i].c_str();
const std::vector<int> &pos = getPositions(&p[3 * j]);
size_t len = pos.size();
// Stop if an invalid codon is found
if (len == 0) {
std::ostringstream o;
o << "Invalid codon at site " << j + 1 << " for specie " << i + 1;
throw FastCodeMLFatal(o);
}
// It is a gap if the codon is completely ambiguous
if (len < 61)
break;
}
if (i == nspecies) {
if (mVerboseLevel >= VERBOSE_INFO_OUTPUT) {
std::cout << "Gap at codon " << j + 1 << std::endl;
}
codon_multiplicity[j] = 0;
++num_gaps;
}
}
// Count ambiguous positions
int num_ambiguous = 0;
for (j = 0; j < ncodons; ++j) {
// Don't check gaps
if (codon_multiplicity[j] == 0)
continue;
bool ambiguous = false;
for (i = 0; i < nspecies; ++i) {
const char *p = mDnaGene[i].c_str();
const std::vector<int> &pos = getPositions(&p[3 * j]);
size_t len = pos.size();
// This is an ambiguous codon
if (len > 1)
ambiguous = true;
}
if (ambiguous)
++num_ambiguous;
}
// Remove invalid codons
for (i = 0; i < nspecies; ++i) {
const char *p = mDnaGene[i].c_str();
for (j = 0; j < ncodons; ++j) {
if (codon_multiplicity[j] == 0)
continue;
if (!validCodon(&p[3 * j], aCleanData))
codon_multiplicity[j] = 0;
}
}
// Check if at least one site remains
size_t valid_codons =
std::count(codon_multiplicity.begin(), codon_multiplicity.end(), 1);
if (valid_codons == 0)
throw FastCodeMLFatal("Not a single valid codon read.");
// Print statistics
if (mVerboseLevel >= VERBOSE_INFO_OUTPUT) {
std::cout << std::endl;
std::cout << "Num. species: " << std::setw(6) << nspecies << std::endl;
std::cout << "Num. basis: " << std::setw(6) << nbasis << std::endl;
std::cout << "Valid codons: " << std::setw(6) << valid_codons << "/"
<< ncodons << std::endl;
if (num_ambiguous)
std::cout << "Ambiguous: " << std::setw(6) << num_ambiguous << "/"
<< ncodons << std::endl;
if (num_gaps)
std::cout << "Gaps removed: " << std::setw(6) << num_gaps << std::endl;
}
// Prepare the mapping from program sites back to original sites
std::multimap<size_t, size_t> sites_back_mapping;
mOriginalNumSites = ncodons;
// Remove duplicated sites
for (i = 0; i < ncodons - 1; ++i) {
if (codon_multiplicity[i] == 0)
continue;
for (j = i + 1; j < ncodons; ++j) {
if (codon_multiplicity[j] == 0)
continue;
unsigned int k = 0;
for (; k < nspecies; ++k) {
const char *p = mDnaGene[k].c_str();
if (!compareCodons(p + 3 * i, p + 3 * j))
break;
}
if (k == nspecies) {
++codon_multiplicity[i];
codon_multiplicity[j] = 0;
sites_back_mapping.insert(std::pair<size_t, size_t>(i, j));
}
}
}
// Compute site multiplicity (remove zero multiplicity sites from
// codon_multiplicity)
mSiteMultiplicity = codon_multiplicity;
std::vector<unsigned int>::iterator pend(
std::remove(mSiteMultiplicity.begin(), mSiteMultiplicity.end(), 0));
mSiteMultiplicity.erase(pend, mSiteMultiplicity.end());
if (mVerboseLevel >= VERBOSE_INFO_OUTPUT) {
std::cout << "Sites: " << std::setw(6) << mSiteMultiplicity.size()
<< "/" << ncodons << std::endl;
int multi_codons = static_cast<int>(
std::count_if(codon_multiplicity.begin(), codon_multiplicity.end(),
std::bind2nd(std::greater<unsigned int>(), 1)));
std::cout << "Multi codons: " << std::setw(6) << multi_codons << "/"
<< ncodons << std::endl;
std::cout << std::endl
<< "------------------------------------" << std::endl;
}
if (mVerboseLevel >= VERBOSE_MORE_DEBUG) {
std::cout << std::endl;
std::ostream_iterator<unsigned int> out_it(std::cout, " ");
std::copy(codon_multiplicity.begin(), codon_multiplicity.end(), out_it);
std::cout << std::endl;
}
// Prepare the map from reduced site num. (j) to list of corresponding
// original sites (i).
for (i = j = 0; i < codon_multiplicity.size(); ++i) {
if (codon_multiplicity[i] > 0) {
mSitesMappingToOriginal.insert(std::pair<size_t, size_t>(j, i));
std::multimap<size_t, size_t>::iterator it;
std::pair<std::multimap<size_t, size_t>::iterator,
std::multimap<size_t, size_t>::iterator> ret;
ret = sites_back_mapping.equal_range(i);
for (it = ret.first; it != ret.second; ++it) {
mSitesMappingToOriginal.insert(
std::pair<size_t, size_t>(j, it->second));
}
++j;
}
}
if (mVerboseLevel >= VERBOSE_MORE_DEBUG) {
std::cout << std::endl;
for (j = 0; j < mSiteMultiplicity.size(); ++j) {
std::multimap<size_t, size_t>::iterator it;
std::pair<std::multimap<size_t, size_t>::iterator,
std::multimap<size_t, size_t>::iterator> ret;
ret = mSitesMappingToOriginal.equal_range(j);
std::cout << "Reduced " << std::setw(4) << j << " maps to original:";
for (it = ret.first; it != ret.second; ++it) {
std::cout << " " << it->second;
}
std::cout << std::endl;
}
std::cout << std::endl;
}
// Compute map from site to position on mDnaGene
for (unsigned int position_on_gene = 0;
position_on_gene < codon_multiplicity.size(); ++position_on_gene) {
if (codon_multiplicity[position_on_gene] > 0)
mMapSiteToDnaGene.push_back(position_on_gene);
}
// Map from specie name to position in DnaGene
unsigned int idx = 0;
std::vector<std::string>::const_iterator is = mDnaSpecies.begin();
const std::vector<std::string>::const_iterator end = mDnaSpecies.end();
for (; is != end; ++is, ++idx)
mMapSpecieToDnaGene[*is] = idx;
}
void Genes::initFullCodonMap(void) {
int i, j, k;
// Create the list of codons without ambiguities
const char *base = "TCAG";
std::map<std::string, int> codons;
char codon[4];
codon[3] = '\0';
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
for (k = 0; k < 4; ++k) {
// Skip stop codons
if (i == 0) {
if ((j == 2) && (k == 2 || k == 3))
continue;
else if (j == 3 && k == 2)
continue;
}
// Compute the index
int idx = i * 4 * 4 + j * 4 + k;
// Adjust for missing stop codons
if (idx > 14)
idx -= 3;
else if (idx > 9)
idx -= 2;
// Create the valid codon
codon[0] = base[i];
codon[1] = base[j];
codon[2] = base[k];
// Add to the map from codon to position in the CPV
codons.insert(std::pair<std::string, int>(std::string(codon), idx));
}
}
}
// Create the list of codons with ambiguous positions
int mask[4] = {0x1, 0x4, 0x8, 0x2};
const char *amb = ".TGKCYSBAWRDMHVN";
char codona[4];
codona[3] = '\0';
codon[3] = '\0';
for (i = 1; i < 16; ++i) {
for (j = 1; j < 16; ++j) {
for (k = 1; k < 16; ++k) {
// Build one of the possible codons (valid and ambiguous)
codona[0] = amb[i];
codona[1] = amb[j];
codona[2] = amb[k];
std::vector<int> pos;
bool valid = false;
// Translate back to the corresponding non-ambiguous codons
for (int mi = 0; mi < 4; ++mi) {
for (int mj = 0; mj < 4; ++mj) {
for (int mk = 0; mk < 4; ++mk) {
if ((i & mask[mi]) && (j & mask[mj]) && (k & mask[mk])) {
codon[0] = base[mi];
codon[1] = base[mj];
codon[2] = base[mk];
// If valid, record the corresponding position
std::map<std::string, int>::const_iterator im(
codons.find(codon));
if (im == codons.end())
continue;
valid = true;
pos.push_back(im->second);
}
}
}
}
// This is a valid, possibly ambiguous codon
if (valid) {
mMapCodonToPosition.insert(std::pair<std::string, std::vector<int> >(
std::string(codona), pos));
}
}
}
}
}
const std::vector<int> &Genes::getPositions(const char *aCodon) const {
// Convert to canonical form (only valid uppercase letters)
char codon[4];
if (aCodon[0] == '-')
codon[0] = 'N';
else {
char b = toupper(aCodon[0]);
codon[0] = (b == 'U') ? 'T' : b;
}
if (aCodon[1] == '-')
codon[1] = 'N';
else {
char b = toupper(aCodon[1]);
codon[1] = (b == 'U') ? 'T' : b;
}
if (aCodon[2] == '-')
codon[2] = 'N';
else {
char b = toupper(aCodon[2]);
codon[2] = (b == 'U') ? 'T' : b;
}
codon[3] = '\0';
// Check if it is in the list of valid codons
std::map<std::string, std::vector<int> >::const_iterator im(
mMapCodonToPosition.find(std::string(codon)));
// If no, return an empty list, else return the list of corresponding
// positions
if (im == mMapCodonToPosition.end())
return mEmptyVector;
return im->second;
}