-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCodeMLoptimizer.h
184 lines (171 loc) · 7.12 KB
/
CodeMLoptimizer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#ifndef CODEMLOPTIMIZER_H
#define CODEMLOPTIMIZER_H
#include <cstdio>
#include <vector>
#include "BranchSiteModel.h"
/// Minimizer from CodeML.
///
/// @author Mario Valle - Swiss National Supercomputing Centre (CSCS) based
/// on code from Ziheng Yang CodeML.
/// @date 2012-01-11 (initial version)
/// @version 1.1
///
class Ming2 {
public:
/// Constructor
///
/// @param[in] aModel The pointer to the hypothesis class that will
/// be used
/// @param[in] aTrace Trace or not the optimizer progress
/// @param[in] aVerbose The verbose level
/// @param[in] aLowerBound Lower limit of the variables to
/// constrain the interval on which the optimum should be computed
/// @param[in] aUpperBound Upper limit of the variables to
/// constrain the interval on which the optimum should be computed
/// @param[in] aDeltaForGradient Delta used to compute the gradient
/// @param[in] aRelativeError Relative error to stop computation
/// @param[in] aStopIfBigger If true stop computation as soon as
/// value is over aThreshol
/// @param[in] aThreshold The threshold at which the maximization
/// should be stopped
/// @param[in] aMaxIterations Maximum number of iterations for the
/// maximization
///
Ming2(BranchSiteModel *aModel, bool aTrace, unsigned int aVerbose,
const std::vector<double> &aLowerBound,
const std::vector<double> &aUpperBound, double aDeltaForGradient,
double aRelativeError, bool aStopIfBigger, double aThreshold,
int aMaxIterations)
: mModel(aModel), mTrace(aTrace), mTraceFun(false),
mLowerBound(aLowerBound), mUpperBound(aUpperBound),
mDeltaForGradient(aDeltaForGradient), mRelativeError(aRelativeError),
mVerbose(aVerbose), mStopIfBigger(aStopIfBigger),
mThreshold(-aThreshold), mMaxIterations(aMaxIterations),
mAlwaysCenter(false), mNoisy((aTrace && aVerbose > 0) ? 9 : 0) {}
/// Do the minimization of: aModel->computeLikelihood(x, n, mTraceFun);
///
/// @param[in,out] aVars The variables that should be optimized
///
/// @return The maximum loglikelihood value
///
double minimizeFunction(std::vector<double> &aVars);
private:
/// The original ming2 minimizer.
/// Few parameters dropped
///
/// @param[in] fout File descriptor on which the trace of the variables is
/// written
/// @param[out] f The minimized function value
/// @param[in,out] x The variables to be optimized
/// @param[in] xl Lower limits for x
/// @param[in] xu Upper limits for x
/// @param[out] space Working space
/// @param[out] ispace Working space (integer)
/// @param[in] rel_error Relative Error (?)
/// @param[in] n Number of variables
///
/// @return Optimization status (-1 check convergence; 0 success; 1 fail)
///
/// @exception FastCodeMLEarlyStopLRT If the optimization has been stopped
/// in advance because LRT is not satisfied
///
int ming2(FILE *fout, double *f, double x[], const double xl[],
const double xu[], double space[], int ispace[], double rel_error,
int n);
/// Compute the gradient at point x
///
/// @param[in] n Number of variables
/// @param[in] x The point on which the gradient should be computed
/// @param[in] f0 The function value in x
/// @param[out] g The computed gradient
/// @param[out] space Workspace
/// @param[in] xmark 0: central; 1: upper; -1: down
/// @param[in] sizep SIZEp original variable
///
void gradientB(int n, const double x[], double f0, double g[], double space[],
const int xmark[], double sizep) const;
/// Himmelblau termination rule.
///
/// @param[in] x0 (Unknown)
/// @param[in] x1 (Unknown)
/// @param[in] f0 (Unknown)
/// @param[in] f1 (Unknown)
/// @param[in] e1 (Unknown)
/// @param[in] e2 (Unknown)
/// @param[in] n Number of variables in x0 and x1
///
/// @return True for stop, false otherwise.
///
bool H_end(const double x0[], const double x1[], double f0, double f1,
double e1, double e2, int n) const;
/// Compute the function moving along p starting from x0 by a percentage t.
///
/// @param[in] t Percentage move along p
/// @param[in] x0 Starting point
/// @param[in] p Search line vector
/// @param[out] x The position on which the function should be evaluated
/// @param[in] n Number of coordinates
///
/// @return The function value computed at point x
///
double fun_LineSearch(double t, const double x0[], const double p[],
double x[], int n);
/// Linear search using quadratic interpolation from x0[] in the direction of
/// p[].
/// The formula used is:
/// x = x0 + a*p a ~(0,limit)
///
/// Adapted from: Wolfe M. A. 1978. Numerical methods for unconstrained
/// optimization: An introduction. Van Nostrand Reinhold Company, New York.
/// pp. 62-73.
///
/// @param[in,out] f Contains f(x0) for input and f(x) for output
/// @param[in] x0 Starting point for the search
/// @param[in] p Search line vector
/// @param[in] step Is used to find the bracket and is increased or reduced as
/// necessary, and is not terribly important.
/// @param[in] limit Limit the range of search between 0 and this value
/// @param[in] e (Unknown)
/// @param[out] space Workspace
/// @param[in] iround Iteration number just for reporting
/// @param[in] n Number of coordinates
///
/// @return The value of a as in: x = x0 + a*p a ~(0,limit)
///
double LineSearch2(double *f, const double x0[], const double p[],
double step, double limit, double e, double space[],
int iround, int n);
/// Disabled assignment operator to avoid warnings on Windows
///
/// @fn Ming2& operator=(const Ming2& aObj)
///
/// @param[in] aObj The object to be assigned
///
/// @return The object receiving the assignment
///
Ming2 &operator=(const Ming2 & /*aObj*/);
private:
BranchSiteModel *
mModel; ///< The model for which the optimization should be computed
bool mTrace; ///< If a trace has been selected
bool mTraceFun; ///< If a trace has been selected for the inner function
/// computeLikelihood()
const std::vector<double> &mLowerBound; ///< Lower limit of the variables to
/// constrain the interval on which the
/// optimum should be computed
const std::vector<double> &mUpperBound; ///< Upper limit of the variables to
/// constrain the interval on which the
/// optimum should be computed
double mDeltaForGradient; ///< This is the original Small_Diff value
double mRelativeError; ///< The relative error at which the computation stops
unsigned int mVerbose; ///< The verbose flag from the BranchSiteModel class
bool mStopIfBigger; ///< When true stop if lnL is bigger than mThreshold
double mThreshold; ///< Threshold for the early stop of optimization if LRT
/// non satisfied (the value is stored with sign changed)
int mMaxIterations; ///< Maximum number of iterations for the maximization
private:
/// The following variables are from the original code
bool mAlwaysCenter; ///< From the original code
int mNoisy; ///< How much rubbish on the screen. Valid values: 0,1,2,3,9
};
#endif