-
Notifications
You must be signed in to change notification settings - Fork 0
/
tMaxwelinputCDR.c
87 lines (76 loc) · 4.12 KB
/
tMaxwelinputCDR.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ∂tE + λ∇x∇xE + ∇P + β∇∇⋅E = -∂J/∂t in Ω
! 2d Convection-Diffusion-Reaction simulation ! ∇⋅E - ɣΔP = 0 in Ω
! Input data file ! nxE = 0 on ∂Ω
! MAOG Bcn, Dic. 2021 ! with:
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! λ, β, ɣ coefficients.
$********************************************************************************
PHYSICAL_PROBLEM
$----------------------------------------------------------------------------------
>Maxwell_In_Non_Convex_Domain
Cavity_Driven_Flow
Direct_Current_Electrical_Resistivity_in_2.5-D
Electric_Field_Excited_By_A_Double_Line_Source
Horizontal_Electric_Dipole_in_3-D_A_Wrong_capture_of_solution
Transient_Electromagnetic_in_2.5-D
$----------------------------------------------------------------------------------
END_PHYSICAL_PROBLEM
$*********************************************************************************
# > > > > > > > Model Parameters
ProbType = STAT !Problem type TIME=transient, other=static
totGp = 3 !1,4,9 for Q, 1,3,7 for P
exacSol = 3 !0=None; 1=SinglrSol ; 2=FullSpace; 3=Algebraic; 4=Double Line
srcRHS = 1 !0=scalar; 1=SingularSol; 2=Maxwell_Polynom; 3=Lapalace_Polynom
BCsProb = 1 !1=Ldomain; 2=Maxwell; 3=MaxwellPoly; 4=Lapalace_Poly; 5=Cavity-Driven Flow; 6=Resistivity; 7=Douible-Line
postpro = 2 !Execution of post-processing routine 1=yes, 2=no
sigma1 = 1.0E+0 !Conductivity of medium 1
sigma2 = 1.0E+0 !Conductivity of medium 2
#***************Geometry
#---------!File .msh that contains the mesh
meshfile = SingularSolution.msh
view = xy !The 2D view x-y (distance) or x-z (depth)
nne = 4 !Nodes per element Q:4-9; P:3-6
i_exp = 3 !Exponent of characteristic mesh size 3,4,5 or 6 2^(-i)
hnatu = 1.0 !Reference element length
refiType = CC !NONE; PS=Powell-Sabin; CC=Criss-Cross
# > > > > > > > Stabilization
kstab = 6 !Stabilization: 0(NONE), 1(SUPG), 2(GLS), 3/5(SGS/TG), 4(CG), 6(MVAF)
ktaum = 1 !Tau matrix: 0, 1, 2
patau = 2.0 !Parameter to obtain tau
n_val = 1.0 !n parameter in exact solution, for simul=1
helem = 1.0 !Characteristic mesh size (maximum element size among the mesh)
Cu = 5.0 !Algorithmic constant
ell = 1.0 !Constante de longitud
# > > > > > > > Fourier Transform
ky_min = 1.0e-3 !Smallest wave number
ky_max = 1.0e0 !Grater wave number
tot_ky = 4 !Total wave numbers
splits = N !If the problem is splited then run as kind of parallel
y_iFT = 0.0 !Position at y-coordinate where the IFT will be computed.
#------------!Filenames for plot the spectrums and store the field after inverse FT
s_spectr = TEM_vs_wavenumber
File_iFT = Real_and_Imaginary_TEM_in_3D
# > > > > > > > Transient Parameters
theta = 2 !BDF1=2 ;CN=3; BDF2=4
time_ini = 1.42000e-8 !Starting time simulation (simulation always starts at 0?)
time_fin = 6.12800e-2 !Total time simulated in [s] --> 1800 microseconds
t_steps = 200 !Number of time steps
twindow = 20 !Time window in waveform signal--> ON->small, OFF->large
signal = 1 !Source waveform: 0=None; 1=step-on; 2=step-off; 3=triangular
initCond = 0 !Initial Condition: 0=None; 1=Double-Line; 2=VMD
# > > > > > > > Name outPut Files
testID = data_Singular_sol
postpro = Maxwell_Singular_Sol_test_01
Error = xxxxxxxx@xxx
Cordina = xxxxxxxxxxxx
Conecti = xxxxxxxxxxxx
t_profi = xxxxxxxxxxxx
s_profi = xxxxxxxxxxxx
# > > > > > > > Source Configuration
#electric Current Vectror
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
#Location
nodalSrc = 1 !Number of nodes will contain the source
16
#Receivers
nodalRec = 1 !Number of nodes as a receiver
300.0 ,-20.0, 0.0