-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathTasselDiversityOut.R
126 lines (105 loc) · 4.17 KB
/
TasselDiversityOut.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# MIT License
# Copyright (c) 2023 Mohsin Ali
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
# Load required libraries
library(tidyverse)
library(data.table)
# Clear the environment
rm(list = ls())
# Input file comma-delimited
TASSEL_genoSummary <- file.choose()
# Read the data
tasselSiteSum <- fread(TASSEL_genoSummary, header = TRUE)
# Print data dimensions and structure
print(dim(tasselSiteSum))
glimpse(tasselSiteSum)
# Message for SNP features calculation
message(paste0("SNP features calculation will be running shortly"))
# Calculate SNP features
SNP_Features <- tasselSiteSum %>%
mutate(
Total_sites = n_distinct(`Site Name`),
Minor_Allele_freq_Sqr = (`Minor Allele Frequency` ^ 2),
Major_Allele_freq_Sqr = (`Major Allele Frequency` ^ 2),
Major_Allele_freq = `Major Allele Gametes` / (2 * `Number of Taxa`),
Minor_Allele_freq = `Minor Allele Gametes` / (2 * `Number of Taxa`),
Obs_het = `Number Heterozygous` / `Number of Taxa`,
Exp_het = 2 * `Major Allele Frequency` * `Minor Allele Frequency`,
Nei_Gene_Diversity = 1 - (`Major Allele Frequency` ^ 2) - (`Minor Allele Frequency` ^ 2),
PIC = 1 - (Major_Allele_freq_Sqr + Minor_Allele_freq_Sqr) - (2 * Major_Allele_freq_Sqr * Minor_Allele_freq_Sqr)
) %>%
select(
`Site Name`,
Chromosome,
Total_sites,
Major_Allele_freq,
Minor_Allele_freq,
Obs_het,
Exp_het,
Nei_Gene_Diversity,
PIC
)
# Save SNP features to a CSV file
fwrite(SNP_Features, paste0(TASSEL_genoSummary, "_SNP_Features.csv"), row.names = TRUE)
# Message for completion
message(paste0("Writing results done"))
# Display SNP features
glimpse(SNP_Features)
# Calculate overall statistics
overall_stats <- SNP_Features %>%
summarise(
Count_site = n(),
Avg_MinorAllFreq = mean(Minor_Allele_freq),
Min_MinorAllFreq = min(Minor_Allele_freq),
Max_MinorAllFreq = max(Minor_Allele_freq),
Avg_Obs_het = mean(Obs_het),
Min_Obs_het = min(Obs_het),
Max_Obs_het = max(Obs_het),
Avg_Exp_het = mean(Exp_het),
Min_Exp_het = min(Exp_het),
Max_Exp_het = max(Exp_het),
Avg_Nei_Gene_Diversity = mean(Nei_Gene_Diversity),
Min_Nei_Gene_Diversity = min(Nei_Gene_Diversity),
Max_Nei_Gene_Diversity = max(Nei_Gene_Diversity),
Avg_PIC = mean(PIC),
Min_PIC = min(PIC),
Max_PIC = max(PIC)
)
# Print overall statistics
print(overall_stats)
print(paste0("Saving overall SNP features"))
# Save overall statistics to a CSV file
fwrite(overall_stats, paste0(TASSEL_genoSummary, "_SNP_Features_overall.csv"), row.names = TRUE)
# Calculate chromosome-wise statistics
chrwise <- SNP_Features %>%
group_by(Chromosome) %>%
summarise(
Count_site = n(),
Avg_MinorAllFreq = mean(Minor_Allele_freq),
Avg_MajorAllFreq = mean(Major_Allele_freq),
Avg_Obs_het = mean(Obs_het),
Avg_Exp_het = mean(Exp_het),
Avg_Nei_Gene_Diversity = mean(Nei_Gene_Diversity),
Avg_PIC = mean(PIC)
)
# Print chromosome-wise statistics
print(chrwise)
print(paste0("Saving chromosome-wise SNP features"))
# Save chromosome-wise statistics to a CSV file
fwrite(chrwise, paste0(TASSEL_genoSummary, "_SNP_Features_Chrwise.csv"), row.names = TRUE)
# Message for analysis completion
message(paste0("Analysis Done"))