-
Notifications
You must be signed in to change notification settings - Fork 0
/
dqgmres.jl
285 lines (220 loc) · 8.08 KB
/
dqgmres.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import Base: start, next, done
export dqgmres, dqgmres!
#struct ArnoldiDecomp{T, matT}
# A::matT
# V::Matrix{T} # Orthonormal basis vectors
# H::Matrix{T} # Hessenberg matrix
#end
#ArnoldiDecomp(A::matT, order::Int, T::Type) where {matT} = ArnoldiDecomp{T, matT}(
# A,
# zeros(T, size(A, 1), order + 1),
# zeros(T, order + 1, order)
#)
#mutable struct Residual{numT, resT}
# current::resT # Current, absolute, preconditioned residual
# accumulator::resT # Used to compute the residual on the go
# nullvec::Vector{numT} # Vector in the null space of H to compute residuals
# β::resT # the initial residual
#end
#Residual(order, T::Type) = Residual{T, real(T)}(
# one(real(T)),
# one(real(T)),
# ones(T, order + 1),
# one(real(T))
#)
mutable struct DQGMRESIterable{preclT, precrT, solT, rhsT, vecT, mem <: Int, arnoldiT <: ArnoldiDecomp, residualT <: Residual, resT <: Real}
Pl::preclT
Pr::precrT
x::solT
b::rhsT
Ax::vecT # Some room to work in.
z::mem
arnoldi::arnoldiT
residual::residualT
mv_products::Int
restart::Int
k::Int
maxiter::Int
reltol::resT
β::resT
end
converged(g::DQGMRESIterable) = g.residual.current ≤ g.reltol
start(::DQGMRESIterable) = 0
done(g::DQGMRESIterable, iteration::Int) = iteration ≥ g.maxiter || converged(g)
function next(g::DQGMRESIterable, iteration::Int)
# Arnoldi step: expand
expand!(g.arnoldi, g.Pl, g.Pr, g.k, g.Ax)
g.mv_products += 1
# Orthogonalize V[:, k + 1] w.r.t. V[:, 1 : k]
g.arnoldi.H[g.k + 1, g.k] = orthogonalize_and_normalize!(
view(g.arnoldi.V, :, max(1, g.k - g.z + 1) : g.k),
view(g.arnoldi.V, :, g.k + 1),
view(g.arnoldi.H, 1 : g.k, g.k)
)
# Implicitly computes the residual
update_residual!(g.residual, g.arnoldi, g.k)
g.k += 1
# Computation of x only at the end of the iterations
# and at restart.
if g.k == g.restart + 1 || done(g, iteration + 1)
# Solve the projected problem Hy = β * e1 in the least-squares sense
rhs = solve_least_squares!(g.arnoldi, g.β, g.k)
# And improve the solution x ← x + Pr \ (V * y)
update_solution!(g.x, view(rhs, 1 : g.k - 1), g.arnoldi, g.Pr, g.k, g.Ax)
g.k = 1
# Restart when not done.
if !done(g, iteration)
# Set the first basis vector
g.β = init!(g.arnoldi, g.x, g.b, g.Pl, g.Ax)
# And initialize the residual
init_residual!(g.residual, g.β)
g.mv_products += 1
end
end
g.residual.current, iteration + 1
end
function dqgmres_iterable!(x, A, b, z;
Pl = Identity(),
Pr = Identity(),
tol = sqrt(eps(real(eltype(b)))),
restart::Int = min(20, size(A, 2)),
maxiter::Int = size(A, 2),
initially_zero::Bool = false
)
T = eltype(x)
# Approximate solution
arnoldi = ArnoldiDecomp(A, restart, T)
residual = Residual(restart, T)
mv_products = initially_zero ? 1 : 0
# Workspace vector to reduce the # allocs.
Ax = similar(x)
residual.current = init!(arnoldi, x, b, Pl, Ax, initially_zero = initially_zero)
init_residual!(residual, residual.current)
reltol = tol * residual.current
DQGMRESIterable(Pl, Pr, x, b, Ax, z,
arnoldi, residual,
mv_products, restart, 1, maxiter, reltol, residual.current
)
end
"""
dqgmres(A, b, z; kwargs...) -> x, [history]
Same as [`dqgmres!`](@ref), but allocates a solution vector `x` initialized with zeros.
"""
dqgmres(A, b, z; kwargs...) = dqgmres!(zerox(A, b), A, b, z; initially_zero = true, kwargs...)
"""
dqgmres!(x, A, b, z; kwargs...) -> x, [history]
Solves the problem ``Ax = b`` with restarted DQGMRES.
# Arguments
- `x`: Initial guess, will be updated in-place;
- `A`: linear operator;
- `b`: right-hand side.
## Keywords
- `initially_zero::Bool`: If `true` assumes that `iszero(x)` so that one
matrix-vector product can be saved when computing the initial
residual vector;
- `tol`: relative tolerance;
- `restart::Int = min(20, size(A, 2))`: restarts DQGMRES after specified number of iterations;
- `maxiter::Int = size(A, 2)`: maximum number of inner iterations of DQGMRES;
- `Pl`: left preconditioner;
- `Pr`: right preconditioner;
- `log::Bool`: keep track of the residual norm in each iteration;
- `verbose::Bool`: print convergence information during the iterations.
# Return values
**if `log` is `false`**
- `x`: approximate solution.
**if `log` is `true`**
- `x`: approximate solution;
- `history`: convergence history.
"""
function dqgmres!(x, A, b, z;
Pl = Identity(),
Pr = Identity(),
tol = sqrt(eps(real(eltype(b)))),
restart::Int = min(20, size(A, 2)),
maxiter::Int = size(A, 2),
log::Bool = false,
initially_zero::Bool = false,
verbose::Bool = false
)
history = ConvergenceHistory(partial = !log, restart = restart)
history[:tol] = tol
log && reserve!(history, :resnorm, maxiter)
iterable = dqgmres_iterable!(x, A, b, z; Pl = Pl, Pr = Pr, tol = tol, maxiter = maxiter, restart = restart, initially_zero = initially_zero)
verbose && @printf("=== dqgmres ===\n%4s\t%4s\t%7s\n","rest","iter","resnorm")
for (iteration, residual) = enumerate(iterable)
if log
nextiter!(history)
history.mvps = iterable.mv_products
push!(history, :resnorm, residual)
end
verbose && @printf("%3d\t%3d\t%1.2e\n", 1 + div(iteration - 1, restart), 1 + mod(iteration - 1, restart), residual)
end
verbose && println()
setconv(history, converged(iterable))
log && shrink!(history)
log ? (x, history) : x
end
#function update_residual!(r::Residual, arnoldi::ArnoldiDecomp, k::Int)
# # Cheaply computes the current residual
# r.nullvec[k + 1] = -conj(dot(view(r.nullvec, 1 : k), view(arnoldi.H, 1 : k, k)) / arnoldi.H[k + 1, k])
# r.accumulator += abs2(r.nullvec[k + 1])
# r.current = r.β / √r.accumulator
#end
#function init!(arnoldi::ArnoldiDecomp{T}, x, b, Pl, Ax; initially_zero::Bool = false) where {T}
# # Initialize the Krylov subspace with the initial residual vector
# # This basically does V[1] = Pl \ (b - A * x) and then normalize
#
# first_col = view(arnoldi.V, :, 1)
# copy!(first_col, b)
# # Potentially save one MV product
# if !initially_zero
# A_mul_B!(Ax, arnoldi.A, x)
# first_col .-= Ax
# end
# A_ldiv_B!(Pl, first_col)
# # Normalize
# β = norm(first_col)
# first_col .*= inv(β)
# β
#end
#@inline function init_residual!(r::Residual{numT, resT}, β) where {numT,resT}
# r.accumulator = one(resT)
# r.β = β
#end
#function solve_least_squares!(arnoldi::ArnoldiDecomp{T}, β, k::Int) where {T}
# # Compute the least-squares solution to Hy = β e1 via Given's rotations
# rhs = zeros(T, k)
# rhs[1] = β
# H = FastHessenberg(view(arnoldi.H, 1 : k, 1 : k - 1))
# A_ldiv_B!(H, rhs)
# rhs
#end
#function update_solution!(x, y, arnoldi::ArnoldiDecomp{T}, Pr::Identity, k::Int, Ax) where {T}
# # Update x ← x + V * y
# # TODO: find the SugarBLAS alternative
# BLAS.gemv!('N', one(T), view(arnoldi.V, :, 1 : k - 1), y, one(T), x)
#end
#function update_solution!(x, y, arnoldi::ArnoldiDecomp{T}, Pr, k::Int, Ax) where {T}
# # Computing x ← x + Pr \ (V * y) and use Ax as a work space
# A_mul_B!(Ax, view(arnoldi.V, :, 1 : k - 1), y)
# A_ldiv_B!(Pr, Ax)
# x .+= Ax
#end
#function expand!(arnoldi::ArnoldiDecomp, Pl::Identity, Pr::Identity, k::Int, Ax)
# # Simply expands by A * v without allocating
# A_mul_B!(view(arnoldi.V, :, k + 1), arnoldi.A, view(arnoldi.V, :, k))
#end
#function expand!(arnoldi::ArnoldiDecomp, Pl, Pr::Identity, k::Int, Ax)
# # Expands by Pl \ (A * v) without allocating
# nextV = view(arnoldi.V, :, k + 1)
# A_mul_B!(nextV, arnoldi.A, view(arnoldi.V, :, k))
# A_ldiv_B!(Pl, nextV)
#end
#function expand!(arnoldi::ArnoldiDecomp, Pl, Pr, k::Int, Ax)
# # Expands by Pl \ (A * (Pr \ v)). Avoids allocation by using Ax.
# nextV = view(arnoldi.V, :, k + 1)
# A_ldiv_B!(nextV, Pr, view(arnoldi.V, :, k))
# A_mul_B!(Ax, arnoldi.A, nextV)
# copy!(nextV, Ax)
# A_ldiv_B!(Pl, nextV)
#end