-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathevaluate.py
259 lines (209 loc) · 9.42 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import re
import os
import sys
import argparse
import random
import tensorflow as tf
import numpy as np
import lib.dataset
import lib.evaluation
import lib.metrics
import csv
from glob import glob
print(f"Numpy version: {np.__version__}")
print(f"Tensorflow version: {tf.__version__}")
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
random.seed(432)
# Default settings.
default_eyepacs_dir = "./data/eyepacs/bin2/test"
default_messidor_dir = "./data/messidor/bin2"
default_messidor2_dir = "./data/messidor2/bin2"
default_load_model_path = "./tmp/model"
default_save_operating_thresholds_path = "./tmp/test_op_pts.csv"
default_batch_size = 32
parser = argparse.ArgumentParser(
description="Evaluate performance of trained graph "
"on test data set. "
"Specify --data_dir if you use the -o param.")
parser.add_argument("-m", "--messidor", action="store_true",
help="evaluate performance on Messidor-Original")
parser.add_argument("-m2", "--messidor2", action="store_true",
help="evaluate performance on Messidor-2")
parser.add_argument("-e", "--eyepacs", action="store_true",
help="evaluate performance on EyePacs set")
parser.add_argument("-o", "--other", action="store_true",
help="evaluate performance on your own dataset")
parser.add_argument("--data_dir", help="directory where data set resides")
parser.add_argument("-lm", "--load_model_path",
help="path to where graph model should be loaded from "
"creates an ensemble if paths are comma separated "
"or a regexp",
default=default_load_model_path)
parser.add_argument("-so", "--save_operating_thresholds_path",
help="path to where operating points metrics should be saved",
default=default_save_operating_thresholds_path)
parser.add_argument("-b", "--batch_size",
help="batch size", default=default_batch_size)
parser.add_argument("-op", "--operating_threshold",
help="operating threshold", default=0.5)
args = parser.parse_args()
if bool(args.eyepacs) == bool(args.messidor) == bool(args.messidor2) == bool(args.other):
print("Can only evaluate one data set at once!")
parser.print_help()
sys.exit(2)
if args.data_dir is not None:
data_dir = str(args.data_dir)
elif args.eyepacs:
data_dir = default_eyepacs_dir
elif args.messidor:
data_dir = default_messidor_dir
elif args.messidor2:
data_dir = default_messidor2_dir
elif args.other and args.data_dir is None:
print("Please specify --data_dir.")
parser.print_help()
sys.exit(2)
load_model_path = str(args.load_model_path)
batch_size = int(args.batch_size)
save_operating_thresholds_path = str(args.save_operating_thresholds_path)
operating_threshold = float(args.operating_threshold)
# Check if the model path has comma-separated entries.
if "," in load_model_path:
load_model_paths = load_model_path.split(",")
# Check if the model path has a regexp character.
elif any(char in load_model_path for char in '*+?'):
load_model_paths = [".".join(x.split(".")[:-1])
for x in glob("{}*".format(load_model_path))]
load_model_paths = list(set(load_model_paths))
else:
load_model_paths = [load_model_path]
print("""
Evaluating: {},
Saving operating thresholds metrics at: {},
Using operating treshold: {},
""".format(data_dir, save_operating_thresholds_path, operating_threshold))
print("Trying to load model(s):\n{}".format("\n".join(load_model_paths)))
# Other setting variables.
num_channels = 3
num_workers = 8
prefetch_buffer_size = 2 * batch_size
num_thresholds = 200
kepsilon = 1e-7
# Define thresholds.
thresholds = lib.metrics.generate_thresholds(num_thresholds, kepsilon) \
+ [operating_threshold]
got_all_y = False
all_y = []
def feed_images(sess, x_tensor, y_tensor, x_batcher, y_batcher):
_x, _y = sess.run([x_batcher, y_batcher])
if not got_all_y:
all_y.append(_y)
return {x_tensor: _x, y_tensor: _y}
eval_graph = tf.Graph()
with eval_graph.as_default() as g:
# Variable for average predictions.
average_predictions = tf.placeholder(tf.float32, shape=[None, 1])
all_labels = tf.placeholder(tf.float32, shape=[None, 1])
# Metrics for finding best validation set.
tp, update_tp, reset_tp = lib.metrics.create_reset_metric(
tf.metrics.true_positives_at_thresholds, scope='tp',
labels=all_labels, predictions=average_predictions,
thresholds=thresholds)
fp, update_fp, reset_fp = lib.metrics.create_reset_metric(
tf.metrics.false_positives_at_thresholds, scope='fp',
labels=all_labels, predictions=average_predictions,
thresholds=thresholds)
fn, update_fn, reset_fn = lib.metrics.create_reset_metric(
tf.metrics.false_negatives_at_thresholds, scope='fn',
labels=all_labels, predictions=average_predictions,
thresholds=thresholds)
tn, update_tn, reset_tn = lib.metrics.create_reset_metric(
tf.metrics.true_negatives_at_thresholds, scope='tn',
labels=all_labels, predictions=average_predictions,
thresholds=thresholds)
# Last element presents the metrics at operating threshold.
confusion_matrix = lib.metrics.confusion_matrix(
tp[-1], fp[-1], fn[-1], tn[-1], scope='confusion_matrix')
brier, update_brier, reset_brier = lib.metrics.create_reset_metric(
tf.metrics.mean_squared_error, scope='brier',
labels=all_labels, predictions=average_predictions)
auc, update_auc, reset_auc = lib.metrics.create_reset_metric(
tf.metrics.auc, scope='auc',
labels=all_labels, predictions=average_predictions)
specificities = tf.div(tn, tn + fp + kepsilon)
sensitivities = tf.div(tp, tp + fn + kepsilon)
all_predictions = []
for model_path in load_model_paths:
# Start session.
with tf.Session(graph=tf.Graph()) as sess:
tf.keras.backend.set_session(sess)
tf.keras.backend.set_learning_phase(False)
# Load the meta graph and restore variables from training.
saver = tf.train.import_meta_graph("{}.meta".format(model_path))
saver.restore(sess, model_path)
graph = tf.get_default_graph()
x = graph.get_tensor_by_name("x:0")
y = graph.get_tensor_by_name("y:0")
try:
predictions = graph.get_tensor_by_name("predictions:0")
except KeyError:
predictions = graph.get_tensor_by_name("predictions/Sigmoid:0")
# Initialize the test set.
test_dataset = lib.dataset.initialize_dataset(
data_dir, batch_size, num_workers=num_workers,
prefetch_buffer_size=prefetch_buffer_size,
num_channels=num_channels, augmentation=False)
# Create an iterator.
iterator = tf.data.Iterator.from_structure(
test_dataset.output_types, test_dataset.output_shapes)
test_images, test_labels = iterator.get_next()
test_init_op = iterator.make_initializer(test_dataset)
# Perform the evaluation.
test_predictions = lib.evaluation.perform_test(
sess=sess, init_op=test_init_op,
feed_dict_fn=feed_images,
feed_dict_args={"sess": sess, "x_tensor": x, "y_tensor": y,
"x_batcher": test_images, "y_batcher": test_labels},
custom_tensors=[predictions])
all_predictions.append(test_predictions[0])
tf.reset_default_graph()
got_all_y = True
# Convert the predictions to a numpy array.
all_predictions = np.array(all_predictions)
# Calculate the linear average of all predictions.
avg_pred = np.mean(all_predictions, axis=0)
# Convert all labels to numpy array.
all_y = np.vstack(all_y)
# Use these predictions for printing evaluation results.
with tf.Session(graph=eval_graph) as sess:
# Reset all streaming variables.
sess.run([reset_tp, reset_fp, reset_fn, reset_tn, reset_brier, reset_auc])
# Update all streaming variables with predictions.
sess.run([update_tp, update_fp, update_fn, update_tn,
update_brier, update_auc],
feed_dict={average_predictions: avg_pred, all_labels: all_y})
# Retrieve confusion matrix and estimated roc auc score.
test_conf_matrix, test_brier, test_auc, test_specificities, \
test_sensitivities = \
sess.run([confusion_matrix, brier, auc, specificities,
sensitivities])
# Print total roc auc score for validation.
print(f"Brier score: {test_brier:6.4}, AUC: {test_auc:10.8}")
# Print confusion matrix.
print(f"Confusion matrix at operating threshold {operating_threshold:0.3f}")
print(test_conf_matrix[0])
# Print sensitivity and specificity at operating threshold.
print("Specificity: {0:0.4f}, Sensitivity: {1:0.4f} at " \
"Operating Threshold {2:0.4f}." \
.format(test_specificities[-1], test_sensitivities[-1],
thresholds[-1]))
# Write sensitivities and specificities to file.
with open(save_operating_thresholds_path, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter=' ')
writer.writerow(['threshold', 'specificity', 'sensitivity'])
for idx in range(num_thresholds):
writer.writerow([
"{:0.4f}".format(x) for x in [
thresholds[idx], test_specificities[idx],
test_sensitivities[idx]]])
sys.exit(0)