-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
266 lines (234 loc) · 9.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
'''
Author: Chris Xiao yl.xiao@mail.utoronto.ca
Date: 2023-09-16 19:47:31
LastEditors: Chris Xiao yl.xiao@mail.utoronto.ca
LastEditTime: 2023-11-28 20:22:53
FilePath: /UNET/utils.py
Description: EndoSAM utilities functions
I Love IU
Copyright (c) 2023 by Chris Xiao yl.xiao@mail.utoronto.ca, All Rights Reserved.
'''
import os
import numpy as np
import shutil
import logging
from torch.nn import functional as F
import torch
import torch.nn as nn
from torchvision.transforms.functional import resize, to_pil_image # type: ignore
from copy import deepcopy
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from typing import Tuple
import io
def plot_progress(logger, save_dir, train_loss, val_loss, scores, name):
"""
Should probably by improved
:return:
"""
assert len(train_loss) != 0
train_loss = np.array(train_loss)
try:
font = {'weight': 'normal',
'size': 18}
matplotlib.rc('font', **font)
fig = plt.figure(figsize=(30, 24))
ax = fig.add_subplot(111)
ax1 = ax.twinx()
ax.plot(train_loss[:,0], train_loss[:,1], color='b', ls='-', label="loss_tr")
if len(val_loss) != 0:
scores = np.array(scores)
val_loss = np.array(val_loss)
ax.plot(val_loss[:, 0], val_loss[:, 1], color='r', ls='-', label="loss_val")
ax.plot(scores[:, 0], scores[:, 1], color='g', ls='-', label="dsc_val")
ax.set_xlabel("epoch")
ax.set_ylabel("loss")
ax1.set_ylabel("dice score")
ax.legend()
ax.set_title(name)
fig.savefig(os.path.join(save_dir, name + ".png"))
plt.cla()
plt.close(fig)
except:
logger.info(f"failed to plot {name} training progress")
def save_checkpoint(adapter_model, optimizer, epoch, best_val_score, train_losses, val_losses, scores, save_dir):
torch.save({
'epoch': epoch,
'best_val_score': best_val_score,
'train_losses': train_losses,
'val_losses': val_losses,
'weights': adapter_model.state_dict(),
'optimizer': optimizer.state_dict(),
'scores': scores
}, save_dir)
def one_hot_embedding_3d(labels, dim=1, class_num=21):
'''
:param real_labels: B 1 H W
:param class_num: N
:return: B N H W
'''
one_hot_labels = labels.clone()
data_dim = list(one_hot_labels.shape)
if data_dim[dim] != 1:
raise AssertionError("labels should have a channel with length equal to one.")
data_dim[dim] = class_num
o = torch.zeros(size=data_dim, dtype=one_hot_labels.dtype, device=one_hot_labels.device)
return o.scatter_(dim, one_hot_labels, 1).contiguous().float()
def setup_logger(logger_name, log_file, level=logging.INFO):
log_setup = logging.getLogger(logger_name)
formatter = logging.Formatter('%(asctime)s %(message)s', datefmt="%Y-%m-%d %H:%M:%S")
log_setup.setLevel(level)
log_setup.propagate = False
if not log_setup.handlers:
fileHandler = logging.FileHandler(log_file, mode='w')
fileHandler.setFormatter(formatter)
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(formatter)
log_setup.addHandler(fileHandler)
log_setup.addHandler(streamHandler)
return log_setup
def make_if_dont_exist(folder_path, overwrite=False):
if os.path.exists(folder_path):
if not overwrite:
print(f'{folder_path} exists, no overwrite here.')
else:
print(f"{folder_path} overwritten")
shutil.rmtree(folder_path, ignore_errors = True)
os.makedirs(folder_path)
else:
os.makedirs(folder_path)
print(f"{folder_path} created!")
# taken from sam.postprocess_masks of https://github.com/facebookresearch/segment-anything
def postprocess_masks(masks, input_size, original_size):
"""
Remove padding and upscale masks to the original image size.
Arguments:
masks (torch.Tensor): Batched masks from the mask_decoder,
in BxCxHxW format.
input_size (tuple(int, int)): The size of the image input to the
model, in (H, W) format. Used to remove padding.
original_size (tuple(int, int)): The original size of the image
before resizing for input to the model, in (H, W) format.
Returns:
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
is given by original_size.
"""
masks = F.interpolate(
masks,
(1024, 1024),
mode="bilinear",
align_corners=False,
)
masks = masks[..., : input_size[0], : input_size[1]]
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
return masks
def preprocess(x: torch.Tensor, img_size: int) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
pixel_mean=[123.675, 116.28, 103.53]
pixel_std=[58.395, 57.12, 57.375]
pixel_mean = torch.Tensor(pixel_mean).view(-1, 1, 1)
pixel_std = torch.Tensor(pixel_std).view(-1, 1, 1)
x = (x - pixel_mean) / pixel_std
# Pad
h, w = x.shape[-2:]
padh = img_size - h
padw = img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
class ResizeLongestSide:
"""
Resizes images to longest side 'target_length', as well as provides
methods for resizing coordinates and boxes. Provides methods for
transforming both numpy array and batched torch tensors.
"""
def __init__(self, target_length: int) -> None:
self.target_length = target_length
def apply_image(self, image: np.ndarray) -> np.ndarray:
"""
Expects a numpy array with shape HxWxC in uint8 format.
"""
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
return np.array(resize(to_pil_image(image), target_size))
def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
"""
Expects a numpy array of length 2 in the final dimension. Requires the
original image size in (H, W) format.
"""
old_h, old_w = original_size
new_h, new_w = self.get_preprocess_shape(
original_size[0], original_size[1], self.target_length
)
coords = deepcopy(coords).astype(float)
coords[..., 0] = coords[..., 0] * (new_w / old_w)
coords[..., 1] = coords[..., 1] * (new_h / old_h)
return coords
def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
"""
Expects a numpy array shape Bx4. Requires the original image size
in (H, W) format.
"""
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
return boxes.reshape(-1, 4)
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
"""
Expects batched images with shape BxCxHxW and float format. This
transformation may not exactly match apply_image. apply_image is
the transformation expected by the model.
"""
# Expects an image in BCHW format. May not exactly match apply_image.
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
return F.interpolate(
image, target_size, mode="bilinear", align_corners=False, antialias=True
)
def apply_coords_torch(
self, coords: torch.Tensor, original_size: Tuple[int, ...]
) -> torch.Tensor:
"""
Expects a torch tensor with length 2 in the last dimension. Requires the
original image size in (H, W) format.
"""
old_h, old_w = original_size
new_h, new_w = self.get_preprocess_shape(
original_size[0], original_size[1], self.target_length
)
coords = deepcopy(coords).to(torch.float)
coords[..., 0] = coords[..., 0] * (new_w / old_w)
coords[..., 1] = coords[..., 1] * (new_h / old_h)
return coords
def apply_boxes_torch(
self, boxes: torch.Tensor, original_size: Tuple[int, ...]
) -> torch.Tensor:
"""
Expects a torch tensor with shape Bx4. Requires the original image
size in (H, W) format.
"""
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
return boxes.reshape(-1, 4)
@staticmethod
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
"""
Compute the output size given input size and target long side length.
"""
scale = long_side_length * 1.0 / max(oldh, oldw)
newh, neww = oldh * scale, oldw * scale
neww = int(neww + 0.5)
newh = int(newh + 0.5)
return (newh, neww)
class TqdmToLogger(io.StringIO):
"""
Output stream for TQDM which will output to logger module instead of
the StdOut.
"""
logger = None
level = None
buf = ''
def __init__(self,logger,level=None):
super(TqdmToLogger, self).__init__()
self.logger = logger
self.level = level or logging.INFO
def write(self,buf):
self.buf = buf.strip('\r\n\t ')
def flush(self):
self.logger.log(self.level, self.buf)