Skip to content

Latest commit

 

History

History
249 lines (231 loc) · 5.69 KB

README.md

File metadata and controls

249 lines (231 loc) · 5.69 KB

Adversarial evaluation of model performances [Updated]

Here is an example of evaluating a model (fine-tuned either on MNLI or SNLI) using adversarial evaluation of natural language inference with the Heuristic Analysis for NLI Systems (HANS) dataset McCoy et al., 2019.

The HANS dataset can be downloaded from this location.

This is an example of using run_hans_mnli.py in Google Colab:

!git clone https://github.com/mhdr3a/transformers-hans
!mv /content/transformers-hans/* /content/
!rm transformers-hans -r
!pip install -r requirements.txt

!git clone https://github.com/tommccoy1/hans
!mv /content/hans/* /content/
!rm hans -r

!python run_hans_mnli.py \
        --task_name hans \
        --do_eval \
        --data_dir ./ \
        --model_name_or_path mnli-6 \
        --max_seq_length 128 \
        --output_dir mnli-6
  • Note that the mnli-6 model is fine-tuned on MNLI; so, use run_hans_snli.py if your model is fine-tuned on SNLI.

This will create the hans_predictions.txt file in ./mnli-6, which can then be evaluated using evaluate_heur_output.py from the HANS dataset.

!python evaluate_heur_output.py ./mnli-6/hans_predictions.txt

The evaluation results for the mnli-6 model is as follows:

Heuristic entailed results:
lexical_overlap: 0.9932
subsequence: 1.0
constituent: 0.9882

Heuristic non-entailed results:
lexical_overlap: 0.6494
subsequence: 0.2434
constituent: 0.353

Subcase results:
ln_subject/object_swap: 0.973
ln_preposition: 0.847
ln_relative_clause: 0.774
ln_passive: 0.134
ln_conjunction: 0.519
le_relative_clause: 0.979
le_around_prepositional_phrase: 1.0
le_around_relative_clause: 1.0
le_conjunction: 0.987
le_passive: 1.0
sn_NP/S: 0.0
sn_PP_on_subject: 0.56
sn_relative_clause_on_subject: 0.491
sn_past_participle: 0.038
sn_NP/Z: 0.128
se_conjunction: 1.0
se_adjective: 1.0
se_understood_object: 1.0
se_relative_clause_on_obj: 1.0
se_PP_on_obj: 1.0
cn_embedded_under_if: 0.692
cn_after_if_clause: 0.0
cn_embedded_under_verb: 0.567
cn_disjunction: 0.0
cn_adverb: 0.506
ce_embedded_under_since: 0.942
ce_after_since_clause: 1.0
ce_embedded_under_verb: 0.999
ce_conjunction: 1.0
ce_adverb: 1.0

Template results:
temp1: 0.973
temp5: 0.910828025477707
temp7: 0.9639175257731959
temp3: 0.8786127167630058
temp2: 0.632768361581921
temp4: 0.9736842105263158
temp6: 0.7142857142857143
temp11: 0.8452380952380952
temp9: 0.7227722772277227
temp15: 0.49
temp16: 0.9875
temp10: 0.9634146341463414
temp8: 0.2463768115942029
temp18: 0.782608695652174
temp12: 0.9012345679012346
temp14: 0.7530864197530864
temp19: 0.9069767441860465
temp13: 0.8421052631578947
temp17: 0.8529411764705882
temp21: 0.12525252525252525
temp20: 0.14257425742574256
temp22: 0.1694915254237288
temp25: 0.5394736842105263
temp24: 0.865979381443299
temp23: 0.42448979591836733
temp28: 0.96875
temp26: 0.9924812030075187
temp29: 0.9683794466403162
temp27: 0.9866666666666667
temp30: 1.0
temp31: 1.0
temp32: 0.991869918699187
temp33: 0.9822834645669292
temp36: 1.0
temp35: 1.0
temp37: 0.0
temp38: 0.56
temp39: 0.491
temp40: 0.0
temp41: 0.09382716049382717
temp42: 0.10235294117647059
temp43: 0.2733333333333333
temp44: 1.0
temp45: 1.0
temp46: 1.0
temp47: 1.0
temp48: 1.0
temp49: 1.0
temp50: 0.692
temp51: 0.0
temp52: 0.567
temp53: 0.0
temp54: 0.0
temp58: 0.506
temp59: 0.942
temp60: 1.0
temp61: 0.999
temp63: 1.0
temp62: 1.0
temp68: 1.0

And here are the evaluation results for the snli-6 model:

Heuristic entailed results:
lexical_overlap: 0.9778
subsequence: 0.9696
constituent: 0.9658

Heuristic non-entailed results:
lexical_overlap: 0.6202
subsequence: 0.1618
constituent: 0.1974

Subcase results:
ln_subject/object_swap: 0.929
ln_preposition: 0.796
ln_relative_clause: 0.717
ln_passive: 0.038
ln_conjunction: 0.621
le_relative_clause: 0.981
le_around_prepositional_phrase: 1.0
le_around_relative_clause: 0.993
le_conjunction: 0.924
le_passive: 0.991
sn_NP/S: 0.001
sn_PP_on_subject: 0.411
sn_relative_clause_on_subject: 0.227
sn_past_participle: 0.042
sn_NP/Z: 0.128
se_conjunction: 0.98
se_adjective: 0.999
se_understood_object: 0.869
se_relative_clause_on_obj: 1.0
se_PP_on_obj: 1.0
cn_embedded_under_if: 0.573
cn_after_if_clause: 0.023
cn_embedded_under_verb: 0.156
cn_disjunction: 0.039
cn_adverb: 0.196
ce_embedded_under_since: 0.873
ce_after_since_clause: 0.984
ce_embedded_under_verb: 0.99
ce_conjunction: 0.982
ce_adverb: 1.0

Template results:
temp1: 0.929
temp5: 0.910828025477707
temp7: 0.9329896907216495
temp3: 0.7976878612716763
temp2: 0.7062146892655368
temp4: 0.7763157894736842
temp6: 0.6190476190476191
temp11: 0.75
temp9: 0.6831683168316832
temp15: 0.42
temp16: 0.975
temp10: 0.7682926829268293
temp8: 0.43478260869565216
temp18: 0.8913043478260869
temp12: 0.7654320987654321
temp14: 0.7037037037037037
temp19: 0.7674418604651163
temp13: 0.5921052631578947
temp17: 0.8823529411764706
temp21: 0.03838383838383838
temp20: 0.03762376237623762
temp22: 0.2796610169491525
temp25: 0.8421052631578947
temp24: 0.7972508591065293
temp23: 0.5346938775510204
temp28: 0.9921875
temp26: 0.9774436090225563
temp29: 0.9565217391304348
temp27: 1.0
temp30: 1.0
temp31: 0.993
temp32: 1.0
temp33: 0.8503937007874016
temp36: 0.9918367346938776
temp35: 0.9901960784313726
temp37: 0.001
temp38: 0.411
temp39: 0.227
temp40: 0.020168067226890758
temp41: 0.07407407407407407
temp42: 0.09411764705882353
temp43: 0.32
temp44: 0.9675850891410048
temp45: 1.0
temp46: 0.999
temp47: 0.869
temp48: 1.0
temp49: 1.0
temp50: 0.573
temp51: 0.023
temp52: 0.156
temp53: 0.044585987261146494
temp54: 0.034026465028355386
temp58: 0.196
temp59: 0.873
temp60: 0.984
temp61: 0.99
temp63: 0.9942307692307693
temp62: 0.96875
temp68: 1.0