-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
171 lines (131 loc) · 6.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""
main file to choose render and neural network parameters
input:
paths do:
obj files stored in render_workspace/object_files
backgrounds stored in render_workspace/bg_database
blender executable
directories of validation data and test data
parameters for:
rendering
neural network training
output:
trained model as h5 file
prints test metric to screen
"""
from kerasmodels import retrain
from src.rendering import render_pipeline
import os
"This script generates artefacts which are saved in folder render_workspace"
def main():
############################################################################
################################ PARAMETERS ################################
############################################################################
############################### INPUT PATHS ###############################
# test and validation data
validation_dir = os.path.join(os.getcwd(),'demo_images','test')
test_dir = os.path.join(os.getcwd(),'demo_images','validation')
# path to blender executable
bl_path = 'PATH/TO/BLENDER/INSTALLATION'
# path to render workspace folder
workspace = os.path.join(os.getcwd(),"render_workspace")
# path to folder containing a set of .model files
obj_set = os.path.join(workspace, 'object_files','two_set') # obj files
model_filename = "model.h5"
############################################################################
############################## NEURAL NETWORK ##############################
# Neural Network Parameters
dense_layers = 1
dense_dim = 1024
dropout = 0
# if true, some of the inceptionV3 layers will be trained for 5 epochs at the end of training
fine_tune = False
# if True, it adds SP noise
add_salt_pepper_noise = False
# 0 = no augmentation, 1 = rotation only, 2 = rotation & zoom
augmentation_mode = 0
epochs = 10
input_dim = 224
############################################################################
################################ BACKGROUND ################################
# Choose background type: 'SUN', 'random', 'white', 'indoor', 'outdoor'
background_type = 'indoor'
# Choose whether to adjust background brightness to product brightness
adjust_brightness = False
############################################################################
################################ RENDERING ################################
# choose how many images to render per class
renders_per_class = 10
# Rendering Parameters
blender_attributes = {
"attribute_distribution_params":
[
# number of lamps is a DISCRETE UNIFORM DISTRIBUTION over NON_NEGATIVE INTEGERS,
# params l and r are lower and upper bounds of distributions, need to be positive integers
["num_lamps","mid", 6], ["num_lamps","scale", 0.3],
# lamp energy is a TRUNCATED NORMAL DISTRIBUTION, param descriptions same as above
["lamp_energy", "mu", 5000.0], ["lamp_energy", "sigmu", 0.3],
# camera location is a COMPOSITE SHELL RING DISTRIBUTION
# param normals define which rings to use, based on their normals, permitted values are 'X','Y','Z' and a combination of the three
# phi sigma needs to be non-negative, and defines the spread of the ring in terms of degrees
# phi sigma of roughly 30.0 corresponds to a unifrom sphere
["camera_loc","phi_sigma", 10.0],
# camera radius is a Truncated Normal Distribution
["camera_radius", "mu", 6.0], ["camera_radius", "sigmu", 0.3],
],
"attribute_distribution" : []
}
############################################################################
############################################################################
################################ EXECUTION ################################
############################################################################
# Set backround image database path
background_database = os.path.join(workspace, "bg_database",background_type)
# determine whether to generate random backgrounds
generate_background = False
if background_type is 'random':
generate_background = True
# construct rendering parameters
arguments = {
"obj_set": obj_set,
"blender_path": bl_path,
"renders_per_class": renders_per_class,
"work_dir": workspace,
"generate_background": generate_background,
"background_database": background_database,
"blender_attributes": blender_attributes
}
# run blender pipeline and produce a zip with all rendered images
path_of_zip = render_pipeline.full_run(**arguments)
# load train images from the zip file
unzipped_dir = retrain.unzip_and_return_path_to_folder(path_of_zip)
train_dir = unzipped_dir + '/images'
# get path for classes.txt
main_dir, filename = os.path.split(path_of_zip)
# default batch size = 64 but choose lower batch size if few images rendered
batch_size = min(renders_per_class//2,64)
# initialize & train model
model = retrain.KerasInception(input_dim=input_dim,
batch_size=batch_size,
dense_layers=dense_layers,
dropout=dropout,
dense_dim=dense_dim)
# train the network
history = model.train(train_dir=train_dir,
validation_dir=validation_dir,
fine_tune=fine_tune,
epochs=epochs,
salt_pepper=add_salt_pepper_noise,
augmentation_params=retrain.get_augmentation_params(augmentation_mode),
# classes_txt_dir=main_dir,
save_model=True,
steps_per_epoch=renders_per_class
)
loss, acc = model.evaluate(test_dir)
print("test accuracy of the model is: ", acc)
print("Model is being saved in ",os.path.join(os.getcwd(),model_filename))
model.save_model(os.path.join(os.getcwd(),model_filename))
if os.path.exists(path_of_zip):
os.remove(path_of_zip)
if __name__== "__main__":
main()