-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathutils.py
341 lines (289 loc) · 11.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import logging
import os
import re
import shutil
import sys
from typing import List
#import deeplake
import openai
import streamlit as st
#from dotenv import load_dotenv
from langchain.callbacks import OpenAICallbackHandler
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.agents.initialize import initialize_agent
from langchain.llms.openai import OpenAI
from langchain.document_loaders import (
CSVLoader,
DirectoryLoader,
GitLoader,
NotebookLoader,
OnlinePDFLoader,
PythonLoader,
TextLoader,
UnstructuredFileLoader,
UnstructuredHTMLLoader,
UnstructuredPDFLoader,
UnstructuredWordDocumentLoader,
WebBaseLoader,
)
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from streamlit.runtime.uploaded_file_manager import UploadedFile
from setting import (
APP_NAME,
CHUNK_SIZE,
DATA_PATH,
PAGE_ICON,
REPO_URL,
)
from env.prompt import (
NLSOM_PREFIX,
NLSOM_FORMAT_INSTRUCTIONS,
NLSOM_SUFFIX,
)
logger = logging.getLogger(APP_NAME)
def configure_logger(debug: int = 0) -> None:
# boilerplate code to enable logging in the streamlit app console
log_level = logging.DEBUG if debug == 1 else logging.INFO
logger.setLevel(log_level)
stream_handler = logging.StreamHandler(stream=sys.stdout)
stream_handler.setLevel(log_level)
formatter = logging.Formatter("%(message)s")
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
logger.propagate = False
configure_logger(0)
def authenticate(
openai_api_key = None,
huggingface_api_key = None,
bingsearch_api_key = None,
wolframalpha_api_key = None,
replicate_api_key = None,
) -> None:
# Validate all credentials are set and correct
# Check for env variables to enable local dev and deployments with shared credentials
openai_api_key = (
openai_api_key
or os.environ.get("OPENAI_API_KEY")
or st.secrets.get("OPENAI_API_KEY")
)
st.session_state["auth_ok"] = True
if not (openai_api_key):
st.session_state["auth_ok"] = False
st.error("Credentials neither set nor stored", icon=PAGE_ICON)
return
try:
# Try to access openai and deeplake
with st.spinner("Authentifying..."):
openai.api_key = openai_api_key
openai.Model.list()
except Exception as e:
logger.error(f"Authentication failed with {e}")
st.session_state["auth_ok"] = False
st.error("Authentication failed", icon=PAGE_ICON)
return
# store credentials in the session state
# OpenAI
if openai_api_key == None and st.secrets["OPENAI_API_KEY"] == None:
logger.info("Authentification - OpenAI - Fail!")
else:
st.session_state["openai_api_key"] = openai_api_key \
if openai_api_key \
else st.secrets["OPENAI_API_KEY"]
os.environ["OPENAI_API_KEY"] = st.session_state["openai_api_key"]
# Huggingface
if huggingface_api_key == None and st.secrets["HUGGINGFACE_ACCESS_Tokens"] == None:
logger.info("Authentification - Huggingface - Fail!")
else:
st.session_state["huggingface_api_key"] = huggingface_api_key \
if huggingface_api_key \
else st.secrets["HUGGINGFACE_ACCESS_Tokens"]
os.environ["HUGGINGFACE_ACCESS_Tokens"] = st.session_state["huggingface_api_key"]
# Wolframalpha
if wolframalpha_api_key == None and st.secrets["WOLFRAM_ALPHA_APPID"] == None:
logger.info("Authentification - WolframAlpha - Fail!")
else:
st.session_state["wolframalpha_api_key"] = wolframalpha_api_key \
if wolframalpha_api_key \
else st.secrets["WOLFRAM_ALPHA_APPID"]
os.environ["WOLFRAM_ALPHA_APPID"] = st.session_state["wolframalpha_api_key"]
# BingSearch
if bingsearch_api_key == None and st.secrets["BING_SUBSCRIPTION_KEY"] == None:
logger.info("Authentification - BingSearch - Fail!")
else:
st.session_state["bingsearch_api_key"] = bingsearch_api_key \
if bingsearch_api_key \
else st.secrets["BING_SUBSCRIPTION_KEY"]
os.environ["BING_SUBSCRIPTION_KEY"] = st.session_state["bingsearch_api_key"]
os.environ["BING_SEARCH_URL"] = "https://api.bing.microsoft.com/v7.0/search"
# Replicate
if replicate_api_key == None and st.secrets["REPLICATE_API_TOKEN"] == None:
logger.info("Authentification - Replicate - Fail!")
else:
st.session_state["replicate_api_key"] = replicate_api_key \
if replicate_api_key \
else st.secrets["REPLICATE_API_TOKEN"]
os.environ["REPLICATE_API_TOKEN"] = st.session_state["replicate_api_key"]
#st.session_state["auth_ok"] = True
def save_uploaded_file(uploaded_file: UploadedFile) -> str:
# streamlit uploaded files need to be stored locally
# before embedded and uploaded to the hub
if not os.path.exists(DATA_PATH):
os.makedirs(DATA_PATH)
file_path = str(DATA_PATH / uploaded_file.name)
uploaded_file.seek(0)
file_bytes = uploaded_file.read()
file = open(file_path, "wb")
file.write(file_bytes)
file.close()
logger.info(f"Saved: {file_path}")
return file_path
def delete_uploaded_file(uploaded_file: UploadedFile) -> None:
# cleanup locally stored files
file_path = DATA_PATH / uploaded_file.name
if os.path.exists(DATA_PATH):
os.remove(file_path)
logger.info(f"Removed: {file_path}")
def handle_load_error(e: str = None) -> None:
error_msg = f"Failed to load '{st.session_state['data_source']}':\n\n{e}"
st.error(error_msg, icon=PAGE_ICON)
logger.error(error_msg)
st.stop()
def load_git(data_source: str, chunk_size: int = CHUNK_SIZE) -> List[Document]:
# We need to try both common main branches
# Thank you github for the "master" to "main" switch
# we need to make sure the data path exists
if not os.path.exists(DATA_PATH):
os.makedirs(DATA_PATH)
repo_name = data_source.split("/")[-1].split(".")[0]
repo_path = str(DATA_PATH / repo_name)
clone_url = data_source
if os.path.exists(repo_path):
clone_url = None
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=0
)
branches = ["main", "master"]
for branch in branches:
try:
docs = GitLoader(repo_path, clone_url, branch).load_and_split(text_splitter)
break
except Exception as e:
logger.error(f"Error loading git: {e}")
if os.path.exists(repo_path):
# cleanup repo afterwards
shutil.rmtree(repo_path)
try:
return docs
except:
msg = "Make sure to use HTTPS git repo links"
handle_load_error(msg)
def load_any_data_source(
data_source: str, chunk_size: int = CHUNK_SIZE
) -> List[Document]:
# Ugly thing that decides how to load data
# It aint much, but it's honest work
is_img = data_source.endswith(".png")
is_video = data_source.endswith(".mp4")
is_audio = data_source.endswith(".wav")
is_text = data_source.endswith(".txt")
is_web = data_source.startswith("http")
is_pdf = data_source.endswith(".pdf")
is_csv = data_source.endswith("csv")
is_html = data_source.endswith(".html")
is_git = data_source.endswith(".git")
is_notebook = data_source.endswith(".ipynb")
is_doc = data_source.endswith(".doc")
is_py = data_source.endswith(".py")
is_dir = os.path.isdir(data_source)
is_file = os.path.isfile(data_source)
loader = None
if is_dir:
loader = DirectoryLoader(data_source, recursive=True, silent_errors=True)
elif is_git:
return load_git(data_source, chunk_size)
elif is_web:
if is_pdf:
loader = OnlinePDFLoader(data_source)
else:
loader = WebBaseLoader(data_source)
elif is_file:
if is_text:
loader = TextLoader(data_source, encoding="utf-8")
elif is_notebook:
loader = NotebookLoader(data_source)
elif is_pdf:
loader = UnstructuredPDFLoader(data_source)
elif is_html:
loader = UnstructuredHTMLLoader(data_source)
elif is_doc:
loader = UnstructuredWordDocumentLoader(data_source)
elif is_csv:
loader = CSVLoader(data_source, encoding="utf-8")
elif is_py:
loader = PythonLoader(data_source)
else:
loader = UnstructuredFileLoader(data_source)
try:
# Chunk size is a major trade-off parameter to control result accuracy over computaion
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=0
)
docs = loader.load_and_split(text_splitter)
logger.info(f"Loaded: {len(docs)} document chucks")
return docs
except Exception as e:
msg = (
e
if loader
else f"No Loader found for your data source. Consider contributing: {REPO_URL}!"
)
handle_load_error(msg)
def update_usage(cb: OpenAICallbackHandler) -> None:
# Accumulate API call usage via callbacks
logger.info(f"Usage: {cb}")
callback_properties = [
"total_tokens",
"prompt_tokens",
"completion_tokens",
"total_cost",
]
for prop in callback_properties:
value = getattr(cb, prop, 0)
st.session_state["usage"].setdefault(prop, 0)
st.session_state["usage"][prop] += value
def cut_dialogue_history(history_memory, keep_last_n_words=500):
if history_memory is None or len(history_memory) == 0:
return history_memory
tokens = str(history_memory).replace("[(", "").replace(")]", "").split()
n_tokens = len(tokens)
if n_tokens < keep_last_n_words:
return history_memory
paragraphs = history_memory.split('\n')
last_n_tokens = n_tokens
while last_n_tokens >= keep_last_n_words:
last_n_tokens -= len(paragraphs[0].split(' '))
paragraphs = paragraphs[1:]
return '\n' + '\n'.join(paragraphs)
def generate_response(prompt: str, tools, history) -> str:
# OpenAI Agent
nlsom_organizer = OpenAI(temperature=0)
nlsom_memory = ConversationBufferMemory(memory_key="chat_history", output_key="output")
mindstorm = initialize_agent(
tools,
nlsom_organizer,
agent="conversational-react-description",
verbose=True,
memory=nlsom_memory,
return_intermediate_steps=True,
agent_kwargs={'prefix': NLSOM_PREFIX, 'format_instructions': NLSOM_FORMAT_INSTRUCTIONS,
'suffix': NLSOM_SUFFIX}, )
mindstorm.memory.chat_memory.add_user_message(st.session_state["chat_history"][0][0])
mindstorm.memory.chat_memory.add_user_message(st.session_state["chat_history"][0][1])
response = mindstorm({'input': prompt.strip()})
response['output'] = response['output'].replace("\\", "/")
response = re.sub('(data/[-\w]*.png)', lambda m: f'![](file={m.group(0)})*{m.group(0)}*', response['output'])
logger.info(f"Response: '{response}'")
st.session_state["chat_history"].append((prompt, response))
return response