-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation.py
349 lines (287 loc) · 16 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
from models import *
import os
import glob
import argparse
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
from sklearn.model_selection import train_test_split
from sklearn import metrics
from idhp_data import *
import SimpleITK as sitk
import cv2
import numpy as np
import math
import copy
def policy_val(t, yf, q_t0, q_t1, q_t2, compute_policy_curve=False):
# if np.any(np.isnan(eff_pred)):
# return np.nan, np.nan
q_cat = np.concatenate((q_t0, q_t1),1)
q_cat = np.concatenate((q_cat, q_t2),1)
policy = np.argmax(q_cat,1)
policy = policy[:,np.newaxis]
#policy = np.ones(policy.shape)
t0_overlap = (policy==t)*(t==0)
t1_overlap = (policy==t)*(t==1)
t2_overlap = (policy==t)*(t==2)
if np.sum(t0_overlap) == 0:
t0_value = 0
else:
t0_value = np.mean(yf[t0_overlap])
if np.sum(t1_overlap) == 0:
t1_value = 0
else:
t1_value = np.mean(yf[t1_overlap])
if np.sum(t2_overlap) == 0:
t2_value = 0
else:
t2_value = np.mean(yf[t2_overlap])
pit_0 = np.sum(policy==0)/len(t)
pit_1 = np.sum(policy==1)/len(t)
pit_2 = np.sum(policy==2)/len(t)
policy_value = pit_0*t0_value + pit_1*t1_value + pit_2*t2_value
return policy_value
def factual_acc(t, yf, q_t0, q_t1, q_t2):
q_t0_ = copy.copy(q_t0)
q_t1_ = copy.copy(q_t1)
q_t2_ = copy.copy(q_t2)
q_t0_[q_t0_>=0.5] = 1
q_t0_[q_t0_<0.5] = 0
q_t1_[q_t1_>=0.5] = 1
q_t1_[q_t1_<0.5] = 0
q_t2_[q_t2_>=0.5] = 1
q_t2_[q_t2_<0.5] = 0
accuracy_0 = np.sum(q_t0_[t==0]==yf[t==0])/len(yf[t==0])
accuracy_1 = np.sum(q_t1_[t==1]==yf[t==1])/len(yf[t==1])
accuracy_2 = np.sum(q_t2_[t==2]==yf[t==2])/len(yf[t==2])
#print("Factual accuracy of t0:", accuracy_0)
#print("Factual accuracy of t1:", accuracy_1)
#print("Factual accuracy of t2:", accuracy_2)
return accuracy_0,accuracy_1,accuracy_2
def factual_acc_(t, yf, q_t0, q_t1, q_t2):
q_t0[q_t0>=0.5] = 1
q_t0[q_t0<0.5] = 0
q_t1[q_t1>=0.5] = 1
q_t1[q_t1<0.5] = 0
q_t2[q_t2>=0.5] = 1
q_t2[q_t2<0.5] = 0
accuracy_0 = np.sum(q_t0[t==0]==yf[t==0])/len(yf[t==0])
accuracy_1 = np.sum(q_t1[t==1]==yf[t==1])/len(yf[t==1])
accuracy_2 = np.sum(q_t2[t==2]==yf[t==2])/len(yf[t==2])
#print("Factual accuracy of t0:", accuracy_0)
#print("Factual accuracy of t1:", accuracy_1)
#print("Factual accuracy of t2:", accuracy_2)
return accuracy_0,accuracy_1,accuracy_2
def factual_auc(t, yf, q_t0, q_t1, q_t2):
auc_0 = metrics.roc_auc_score(yf[t==0],q_t0[t==0])
auc_1 = metrics.roc_auc_score(yf[t==1],q_t1[t==1])
auc_2 = metrics.roc_auc_score(yf[t==2],q_t2[t==2])
return auc_0,auc_1,auc_2
def policy_risk_multi(t, yf, q_t0, q_t1, q_t2):
policy_value = policy_val(t, yf, q_t0, q_t1, q_t2)
policy_risk = 1 - policy_value
return policy_risk
def ate_error_0_1(t, yf, eff_pred):
att = np.mean(yf[t==0]) - np.mean(yf[t==1])
pred_att = np.mean(eff_pred)
return np.abs(att-pred_att)
def ate_error_0_2(t, yf, eff_pred):
att = np.mean(yf[t==0]) - np.mean(yf[t==2])
pred_att = np.mean(eff_pred)
return np.abs(att-pred_att)
def ate_error_1_2(t, yf, eff_pred):
att = np.mean(yf[t==1]) - np.mean(yf[t==2])
pred_att = np.mean(eff_pred)
return np.abs(att-pred_att)
def _split_output(yt_hat, t, y, y_scaler, x, is_train=False):
"""
Split output into dictionary for easier use in estimation
Args:
yt_hat: Generated prediction
t: Binary treatment assignments
y: Treatment outcomes
y_scaler: Scaled treatment outcomes
x: Covariates
index: Index in data
Returns:
Dictionary of all needed data
"""
traumatic = x[:,3]
traumatic_index = np.where(traumatic==1)
yt_hat = yt_hat[traumatic_index]
t = t[traumatic_index]
y = y[traumatic_index]
y_scaler = y_scaler[traumatic_index]
x = x[traumatic_index]
yt_hat = yt_hat
q_t0 = yt_hat[:, 0].reshape(-1, 1).copy()
q_t1 = yt_hat[:, 1].reshape(-1, 1).copy()
q_t2 = yt_hat[:, 2].reshape(-1, 1).copy()
g = yt_hat[:, 3:6].copy()
treatment_predicted = np.argmax(g,1)
if yt_hat.shape[1] == 4:
eps = yt_hat[:, 3][0]
else:
eps = np.zeros_like(yt_hat[:, 2])
y = y.copy()
var = "average propensity for t0: {} and t1: {} and t2: {}".format(g[:,0][t.squeeze() == 0.].mean(),
g[:,1][t.squeeze() == 1.].mean(),g[:,2][t.squeeze() == 2.].mean())
#auc_0,auc_1,auc_2 = factual_auc(t, y, q_t0, q_t1, q_t2)
auc_0,auc_1,auc_2 = 0,0,0
accuracy_0,accuracy_1,accuracy_2 = factual_acc(t, y, q_t0, q_t1, q_t2)
q_cat = np.concatenate((q_t0, q_t1),1)
q_cat = np.concatenate((q_cat, q_t2),1)
#policy = np.argmax(q_cat,1)
return {'ave propensity for t0': g[:,0][t.squeeze() == 0.].mean(), 'ave propensity for t1': g[:,1][t.squeeze() == 1.].mean(),
'ave propensity for t2': g[:,2][t.squeeze() == 2.].mean(), 'Policy Risk': policy_risk_multi(t, y, q_t0, q_t1, q_t2),
'Ate_Error_0_1': ate_error_0_1(t, y, q_t0 - q_t1), 'Ate_Error_0_2': ate_error_0_2(t, y, q_t0 - q_t2),
'Ate_Error_1_2': ate_error_1_2(t, y, q_t1 - q_t2), 'Treatment accuracy': np.sum(treatment_predicted==t.squeeze())/treatment_predicted.shape[0],
'Treatment policy': np.argmax(q_cat,1), 'Treatment prediction': treatment_predicted, 'Treatment label': t.squeeze().astype(int),'accuracy_0':accuracy_0,
'accuracy_1':accuracy_1,'accuracy_2':accuracy_2,'auc_0':auc_0,
'auc_1':auc_1,'auc_2':auc_2}
average_propensity_for_t0 = []
average_propensity_for_t1 = []
average_propensity_for_t2 = []
policy_risk = []
test_ate_error_0_1 = []
test_ate_error_0_2 = []
test_ate_error_1_2 = []
treatment_accuracy = []
treatment_policy=np.array([])
treatment_prediction=np.array([])
treatment_label=np.array([])
test_factual_accuracy_of_t0 = []
test_factual_accuracy_of_t1 = []
test_factual_accuracy_of_t2 = []
train_average_propensity_for_t0 = []
train_average_propensity_for_t1 = []
train_average_propensity_for_t2 = []
train_policy_risk = []
train_ate_error_0_1 = []
train_ate_error_0_2 = []
train_ate_error_1_2 = []
train_treatment_accuracy = []
train_factual_accuracy_of_t0 = []
train_factual_accuracy_of_t1 = []
train_factual_accuracy_of_t2 = []
test_factual_auc_of_t0 = []
test_factual_auc_of_t1 = []
test_factual_auc_of_t2 = []
key_word = 'Treatment accuracy'
key_word4 = 'Policy Risk'
key_word5 = 'accuracy_0'
key_word6 = 'accuracy_1'
key_word7 = 'accuracy_2'
key_word1 = 'Ate_Error_0_1'
key_word2 = 'Ate_Error_0_2'
key_word3 = 'Ate_Error_1_2'
for validation_index in range(10):
best_evaluation = 1.
train_outputs_best = {}
test_outputs_best = {}
for epoch in range(600,1500,10):
test_results = np.load("./results_save/cli/{}_fold_{}_epoch_test.npz".format(validation_index, epoch), allow_pickle=True)
train_results = np.load("./results_save/cli/{}_fold_{}_epoch_train.npz".format(validation_index, epoch), allow_pickle=True)
yt_hat_test, t_test, y_test, y, x_test = test_results['yt_hat_test'], test_results['t_test'], test_results['y_test'], \
test_results['y'], test_results['x_test']
yt_hat_train, t_train, y_train, y, x_train = train_results['yt_hat_train'], train_results['t_train'], train_results['y_train'], \
train_results['y'], train_results['x_train']
test_outputs = _split_output(yt_hat_test, t_test, y_test, y, x_test, is_train=False)
train_outputs = _split_output(yt_hat_train, t_train, y_train, y, x_train, is_train=True)
#test_outputs = test_outputs['arr_0'].item()
#train_outputs = train_outputs['arr_0'].item()
#if test_outputs[key_word] <= best_evaluation and epoch>=500:
if (test_outputs[key_word1]+test_outputs[key_word2]+test_outputs[key_word3]+test_outputs[key_word4]+(1-test_outputs[key_word5])+(1-test_outputs[key_word6])+(1-test_outputs[key_word7]))/7 <= best_evaluation and epoch>=500:
test_outputs_best = test_outputs
#best_evaluation = test_outputs[key_word]
best_evaluation = (test_outputs[key_word1]+test_outputs[key_word2]+test_outputs[key_word3]+test_outputs[key_word4]+(1-test_outputs[key_word5])+(1-test_outputs[key_word6])+(1-test_outputs[key_word7]))/7
train_outputs_best = train_outputs
# if (train_outputs[key_word1]+train_outputs[key_word2]+train_outputs[key_word3]+train_outputs[key_word4]+(1-train_outputs[key_word5])+(1-train_outputs[key_word6])+(1-train_outputs[key_word7]))/7 <= best_evaluation and epoch>=500:
# train_outputs_best = train_outputs
# #best_evaluation = test_outputs[key_word]
# best_evaluation = (train_outputs[key_word1]+train_outputs[key_word2]+train_outputs[key_word3]+train_outputs[key_word4]+(1-train_outputs[key_word5])+(1-train_outputs[key_word6])+(1-train_outputs[key_word7]))/7
print("==========Best test results for the {} fold==========".format(validation_index))
print("average propensity for t0: {} and t1: {} and t2: {}".format(test_outputs_best['ave propensity for t0'],test_outputs_best['ave propensity for t1'],
test_outputs_best['ave propensity for t2']))
print("Policy Risk:", test_outputs_best['Policy Risk'])
print("Ate_Error_0_1:", test_outputs_best['Ate_Error_0_1'])
print("Ate_Error_0_2:", test_outputs_best['Ate_Error_0_2'])
print("Ate_Error_1_2:", test_outputs_best['Ate_Error_1_2'])
print("Treatment accuracy:", test_outputs_best['Treatment accuracy'])
print("Treatment policy :",test_outputs_best['Treatment policy'])
print("Treatment prediction:",test_outputs_best['Treatment prediction'])
print("Treatment label :",test_outputs_best['Treatment label'])
print("Factual accuracy of t0:", test_outputs_best['accuracy_0'])
print("Factual accuracy of t1:", test_outputs_best['accuracy_1'])
print("Factual accuracy of t2:", test_outputs_best['accuracy_2'])
print("Factual auc of t0:", test_outputs_best['auc_0'])
print("Factual auc of t1:", test_outputs_best['auc_1'])
print("Factual auc of t2:", test_outputs_best['auc_2'])
print("==========Best train results for the {} fold==========".format(validation_index))
print("average propensity for t0: {} and t1: {} and t2: {}".format(train_outputs_best['ave propensity for t0'],train_outputs_best['ave propensity for t1'],
train_outputs_best['ave propensity for t2']))
print("Policy Risk:", train_outputs_best['Policy Risk'])
print("Ate_Error_0_1:", train_outputs_best['Ate_Error_0_1'])
print("Ate_Error_0_2:", train_outputs_best['Ate_Error_0_2'])
print("Ate_Error_1_2:", train_outputs_best['Ate_Error_1_2'])
print("Treatment accuracy:", train_outputs_best['Treatment accuracy'])
print("Factual accuracy of t0:", train_outputs_best['accuracy_0'])
print("Factual accuracy of t1:", train_outputs_best['accuracy_1'])
print("Factual accuracy of t2:", train_outputs_best['accuracy_2'])
print("Factual auc of t0:", train_outputs_best['auc_0'])
print("Factual auc of t1:", train_outputs_best['auc_1'])
print("Factual auc of t2:", train_outputs_best['auc_2'])
print("====================================================")
average_propensity_for_t0.append(test_outputs_best['ave propensity for t0'])
average_propensity_for_t1.append(test_outputs_best['ave propensity for t1'])
average_propensity_for_t2.append(test_outputs_best['ave propensity for t2'])
policy_risk.append(test_outputs_best['Policy Risk'])
test_ate_error_0_1.append(test_outputs_best['Ate_Error_0_1'])
test_ate_error_0_2.append(test_outputs_best['Ate_Error_0_2'])
test_ate_error_1_2.append(test_outputs_best['Ate_Error_1_2'])
treatment_accuracy.append(test_outputs_best['Treatment accuracy'])
test_factual_accuracy_of_t0.append(test_outputs_best['accuracy_0'])
test_factual_accuracy_of_t1.append(test_outputs_best['accuracy_1'])
test_factual_accuracy_of_t2.append(test_outputs_best['accuracy_2'])
test_factual_auc_of_t0.append(test_outputs_best['auc_0'])
test_factual_auc_of_t1.append(test_outputs_best['auc_1'])
test_factual_auc_of_t2.append(test_outputs_best['auc_2'])
treatment_policy=np.concatenate((treatment_policy,test_outputs_best['Treatment policy']),0)
treatment_prediction=np.concatenate((treatment_prediction,test_outputs_best['Treatment prediction']),0)
treatment_label=np.concatenate((treatment_label,test_outputs_best['Treatment label']),0)
train_average_propensity_for_t0.append(train_outputs_best['ave propensity for t0'])
train_average_propensity_for_t1.append(train_outputs_best['ave propensity for t1'])
train_average_propensity_for_t2.append(train_outputs_best['ave propensity for t2'])
train_policy_risk.append(train_outputs_best['Policy Risk'])
train_ate_error_0_1.append(train_outputs_best['Ate_Error_0_1'])
train_ate_error_0_2.append(train_outputs_best['Ate_Error_0_2'])
train_ate_error_1_2.append(train_outputs_best['Ate_Error_1_2'])
train_factual_accuracy_of_t0.append(train_outputs_best['accuracy_0'])
train_factual_accuracy_of_t1.append(train_outputs_best['accuracy_1'])
train_factual_accuracy_of_t2.append(train_outputs_best['accuracy_2'])
train_treatment_accuracy.append(train_outputs_best['Treatment accuracy'])
print("==========Average best test results==========")
print("average propensity for t0: {} and t1: {} and t2: {}".format(np.mean(average_propensity_for_t0),np.mean(average_propensity_for_t1),
np.mean(average_propensity_for_t2)))
print("Policy Risk: {} +- {}".format(np.mean(policy_risk),np.std(policy_risk)))
print("Ate_Error_0_1: {} +- {}".format(np.mean(test_ate_error_0_1),np.std(test_ate_error_0_1)))
print("Ate_Error_0_2: {} +- {}".format(np.mean(test_ate_error_0_2),np.std(test_ate_error_0_2)))
print("Ate_Error_1_2: {} +- {}".format(np.mean(test_ate_error_1_2),np.std(test_ate_error_1_2)))
print("Treatment accuracy: {} +- {}".format(np.mean(treatment_accuracy),np.std(treatment_accuracy)))
print("Treatment policy :",treatment_policy)
print("Treatment prediction:",treatment_prediction)
print("Treatment label :",treatment_label)
print("Factual accuracy of t0: {} +- {}".format(np.mean(test_factual_accuracy_of_t0),np.std(test_factual_accuracy_of_t0)))
print("Factual accuracy of t1: {} +- {}".format(np.mean(test_factual_accuracy_of_t1),np.std(test_factual_accuracy_of_t1)))
print("Factual accuracy of t2: {} +- {}".format(np.mean(test_factual_accuracy_of_t2),np.std(test_factual_accuracy_of_t2)))
print("Factual auc of t0: {} +- {}".format(np.mean(test_factual_auc_of_t0),np.std(test_factual_auc_of_t0)))
print("Factual auc of t1: {} +- {}".format(np.mean(test_factual_auc_of_t1),np.std(test_factual_auc_of_t1)))
print("Factual auc of t2: {} +- {}".format(np.mean(test_factual_auc_of_t2),np.std(test_factual_auc_of_t2)))
print("==========Average best train results=========")
print("average propensity for t0: {} and t1: {} and t2: {}".format(np.mean(train_average_propensity_for_t0),np.mean(train_average_propensity_for_t1),
np.mean(train_average_propensity_for_t2)))
print("Policy Risk: {} +- {}".format(np.mean(train_policy_risk),np.std(train_policy_risk)))
print("Ate_Error_0_1: {} +- {}".format(np.mean(train_ate_error_0_1),np.std(train_ate_error_0_1)))
print("Ate_Error_0_2: {} +- {}".format(np.mean(train_ate_error_0_2),np.std(train_ate_error_0_2)))
print("Ate_Error_1_2: {} +- {}".format(np.mean(train_ate_error_1_2),np.std(train_ate_error_1_2)))
print("Treatment accuracy: {} +- {}".format(np.mean(train_treatment_accuracy), np.std(train_treatment_accuracy)))
print("=============================================")