-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpendulum_figure.py
executable file
·610 lines (460 loc) · 19.9 KB
/
pendulum_figure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
#!/usr/bin/env python
import warnings
from functools import partial
import diffrax
import ipdb
import jax
import jax.numpy as np
import matplotlib
import matplotlib.pyplot as pl
import numpy as onp
import scipy
import tqdm
from jax import config
import pontryagin_utils
from misc import *
config.update("jax_enable_x64", True)
def f(x, u):
# dynamics from https://arxiv.org/pdf/2312.17467
sinPhi, cosPhi, phidot = x
m = l = 1
b = 0
g = 9.81
sinPhi_dot = cosPhi * phidot
cosPhi_dot = -sinPhi * phidot
phidot_dot = -1/(m * l**2) * (b * phidot - m*g*l*sinPhi - u.reshape())
return np.array([sinPhi_dot, cosPhi_dot, phidot_dot])
def l(x, u):
sinPhi, cosPhi, phidot = x
q1, q2, r = 1., 1., 2.
cost = q1 * (sinPhi**2 + (cosPhi - 1)**2) + q2 * phidot**2 + r * u**2
return cost.reshape()
# lots of unneeded things...
problem_params = {
'system_name': 'inv_pendulum',
# dynamics X x U -> TxX, stage cost X x U -> R
'f': f,
'l': l,
# state & input space dimensions
# if manifold, the dimension of the ambient space, not the manifold!
'nx': 3,
'nu': 1,
'state_names': ("x", "y"),
'u_eq': np.zeros(1),
'x_eq': np.array([0., 1., 0]),
# if ever treating slightly bigger systems it would pay to frame this
# as a general convex polytope described by Ax <= b.
'U_interval': [-0.5, 0.5],
# the value level below which we accept the LQR solution as correct.
'V_f': 0.01,
# constraint equation defining the state space manifold as its 0-levelset.
# if R^n, set this to None
# number of constraint equations = codimension of manifold.
# atm only codimension 1 is supported, because this makes finding
# an orthonormal basis for the normal space trivial.
# in this case only the unit circle for angle parameterisation.
# / 2 so its jacobian is normalised.
'm': lambda x: (x[0]**2 + x[1]**2 - 1) / 2,
# 'm': None,
# projection operation onto the manifold -- great for resetting if
# we stray off the manifold due to numerical errors.
# 'project_M': lambda x: x.at[2:4].set(x[2:4] / np.linalg.norm(x[2:4])),
'project_M': lambda x: x.at[0:2].set(x[0:2] / np.linalg.norm(x[0:2])),
'x_extent': np.array([4, 4]),
}
algo_params = {
# PRNG seed
'seed': 0,
# ODE SOLVER PARAMS
'pontryagin_solver_atol': 1e-4,
'pontryagin_solver_rtol': 1e-4,
'dtmin': 0.01,
'dtmax': 0.5,
# project back to manifold after each solver step. only possible if
# problem_params['project_M'] correctly defined.
'project_manifold': True,
# with throw=True we can set this pretty tight - it will just stop early.
# will have to make sure ourselves that this is not a problem
'pontryagin_solver_maxsteps': 128,
# not very relevant if we can just "resume" the trajectory in a later solve
# also maybe it makes sense to stop based on value, like stop after we reach sth like 10x
# the current value level? then we pervent spending lots of effort in "difficult" (=high l(x, u))
# state space regions.
'pontryagin_solver_T': 10.,
# (this was not used for a long time)
# in theory ||vxx|| can become infinite - meaning we solve an ODE with finite escape time.
# this happenn when many optimal trajectories originate from a small region (or a point in the limit)
# to avoid this we just stop calculating the trajectory once ||vxx|| exceeds this bound.
# hopefully the state space will still be sufficiently covered. In regions where ||vxx|| would
# have been very high we will just have to accept the interpolation instead.
'pontryagin_solver_vxx': False,
'vxx_max_norm': 1e4,
# causes it not to quit when hitting maxsteps. probably still all subsequent
# results will be unusable due to evaluating solutions outside their domain giving NaN
'throw': False,
# NN ARCHITECTURE & TRAINING
# big question: should we aim for over- or underparameterisation?
# 'nn_layerdims': (256, 16),
'nn_type': 'leaky',
'nn_layerdims': (16, 16, 16),
'nn_batchsize': 32,
'nn_N_epochs': 256,
'nn_train_fraction': .98,
'lr_staircase': False,
'lr_staircase_steps': 8,
'lr_init': 0.05,
'lr_final': 0.005,
'weight_decay': .0005,
'nn_warmstart_fraction': 1.,
'nn_ensemble_size': 4,
'nn_warm_start': True,
'nn_value_sweep': False,
'nn_progressbar': True,
# NN LOSS FUNCTION
# relative importance of the losses for v, vx, vxx.
# mostly we care about representing vx with great accuracy,
# the other two can be thought of as "hints"/priors/inductive biases
# to fit the correct vx function.
'nn_sobolev_weight_v': 1.,
'nn_sobolev_weight_vx': 10.,
# width of the quadratic regions in smoothed huber loss.
# both in terms of relative error, i.e. 0.1 means that above an
# error of 10% we penalise less heavily.
'vx_loss_d': 0.3,
'v_loss_d': 0.2,
# penalisation of the extra value derivative which is defined in the ambient space
# but normal to the state manifold.
'vx_normal_regularisation': 0.001,
# this is not a proper "prior" in the bayesian sense, but rather
# just an additional weak loss term that makes the value function
# large-ish at the problematic state of being upside down but
# otherwise at equilibrium.
'prior_strength': 0.01,
'v_prior': 200.,
'inv_vx_loss_fadeout': 10,
# MAIN ALGO
# only take a subsample of data for active learning. dense sample
# close to current level set, less dense sample further down.
# the uncertainty bound we wish to satisfy.
# sigma_max(mu) = simga_max_abs + simga_max_rel * mu
'sigma_max_abs': 0.5,
'sigma_max_rel': 0.05,
# value band for training = [v_k / thin_data_denominator, v_next_target]
'thin_data': False,
'thin_data_denominator': 10,
# initial data generation. 'uniform' or 'lqr' for nicer distribution.
'initial_shooting': 'lqr',
# the value level we include in the initial learning round.
'v_init': 1.,
# number of proposals per active learning iteration.
# larger = nicer! but don't kill our poor RAM
'initial_batchsize': 64,
'active_learning_batchsize': 16,
'include_future_data': True,
# the max. time horizon by which we aim to grow the known level set
# in one iteration.
'T_value_target': 2.,
'vk_estimator': 'k_exceptions',
'proposal_sampling_distribution': 'uniform',
'proposal_strategy': 'max_kernel_adaptive',
'proposal_kernel_scaling': 0.5,
'pruning_strategy': 'conservative',
'L_v': np.inf,
'L_vx': 2000,
# the sublevel set Vk must contain at least this fraction of test points
# which are below the sigma target to qualify as "learned".
# only applies for 'vk_estimator' == 'relaxed'.
'frac_certain_in_Vk': .99,
# OUTPUT & VISUALISATION
'wandb': False,
# save figures on filesystem.
'savefigs': False,
# track figures with aim.
'wandbfigs': True,
# show figures in UI (blocking!)
'showfigs': True,
'ipdb_interval': 8,
}
# magic switch for value level sets.
algo_params['reparam'] = True
algo_params['dtmin'] = 0.001 # smaller for initial stuff
algo_params['dtmax'] = 1000. # larger for high v
algo_params['pontryagin_solver_atol'] = 1e-5
algo_params['pontryagin_solver_rtol'] = 1e-5
algo_params['pontryagin_solver_maxsteps'] = 128
solve_backward, f_extended = pontryagin_utils.define_backward_solver(problem_params, algo_params)
u_star = pontryagin_utils.u_star_general(np.zeros(3), np.zeros(3), problem_params)
K_lqr, P_lqr, P_tangent = pontryagin_utils.get_terminal_lqr(
problem_params, return_tangent_projection=True
)
P_lqr_tangent = P_tangent @ P_lqr @ P_tangent.T
eq = problem_params['x_eq']
V_f = lambda x: 0.5 * (x - eq).T @ P_lqr @ (x - eq)
thetas = np.linspace(0, 2 * np.pi, 2048)[:-1]
circle_xs = jax.vmap(lambda theta: np.array([np.sin(theta), np.cos(theta)]))(thetas)
xfs = (0.1 * circle_xs @ np.linalg.inv(scipy.linalg.sqrtm(P_lqr_tangent))) @ P_tangent + problem_params['x_eq'][None, :]
yfs = jax.vmap(lambda xf: dict(x=problem_params['project_M'](xf), v=V_f(xf), vx=jax.grad(V_f)(xf), t=0.))(xfs)
yf = jtm(itemgetter(0), yfs)
# ipdb.set_trace()
vf = yf['v']
# v_upper = 1000.
@jax.jit
def remesh(sols, frac):
# the magic sauce.
# if necessary: find here by bisection the largest v such that some
# maximum distance between points is not exceeded.
yfs = jax.vmap(lambda sol: sol.evaluate(sol.t1))(sols)
# yfs['x'] represents a closed curve in state space. consider it equal to
# its piecewise linear interpolation for now. we want something like the
# arclength parametrization, to redistribute the points equidistantly. how?
# first get the distances between all the neighbors.
xs = yfs['x']
rolled_xs = np.roll(xs, -1, axis=0)
lifted_arclen=True
if lifted_arclen:
# compute arclentghs in full (x, λ) space.
# but normalise gradient. only care about direction.
lams = yfs['vx'] / np.linalg.norm(yfs['vx'], axis=1)[:, None]
rolled_lams = np.roll(lams, -1, axis=0)
neighbor_dists = np.linalg.norm(np.hstack([xs, lams]) - np.hstack([rolled_xs, rolled_lams]), axis=1)
else:
neighbor_dists = np.linalg.norm(xs - rolled_xs, axis=1)
arclengths = np.cumsum(neighbor_dists)
# now, find a new set of points that are equidistant in arclength.
# considering arclengths as a function of the index, we see it is monotonously increasing and thus invertible.
# thus we can also view index as a function of arclength! and use standard numpy interp thing.
N = yfs['x'].shape[0]
arclengths_even = np.linspace(0, arclengths[-1], N)
frac_idx = np.interp(arclengths_even, arclengths, np.arange(N))
# now, we can use this fractional index to interpolate the new points.
# maybe this could have been done in a single step???
# instead use the previous ys for that interpolation.
# t = (1-frac) * sols.t0[0] + (frac) * sols.t1[0]
nx = yfs['x'].shape[1]
ys_remesh = jax.vmap(lambda sol: sol.evaluate(sol.t0))(sols)
new_v = np.interp(frac_idx, np.arange(N), ys_remesh['v'])
new_x = np.array([np.interp(frac_idx, np.arange(N), ys_remesh['x'][:, i]) for i in range(nx)]).T
new_vx = np.array([np.interp(frac_idx, np.arange(N), ys_remesh['vx'][:, i]) for i in range(nx)]).T
new_t = np.interp(frac_idx, np.arange(N), ys_remesh['t'])
new_y = dict(x=new_x, v=new_v, vx=new_vx, t=new_t)
return new_y
solve_fast = jax.jit(jax.vmap(solve_backward, in_axes=(0, None)))
# solve_fast = jax.vmap(solve_backward, in_axes=(0, None))
vmax = 15
N=20
levels = np.logspace(0., np.log10(vmax), N)
levels = np.linspace(np.sqrt(2*vf), np.sqrt(vmax), N)**2
# levels = np.linspace(1, vmax, N)
sols = None
transform_plot = lambda x: np.concatenate([np.array([np.arctan2(x[0], x[1])]), x[2:]])
threed = False
if threed:
ax = pl.figure().add_subplot(projection='3d')
else:
# add nan to angles near +- pi to make plot nicer despite glued
# together boundaries
transform_plot = lambda x: np.concatenate([np.array([np.arctan2(x[0], x[1])]), x[2:]]) + np.nan * (x[1] < -0.95)
for v_upper in tqdm.tqdm(levels):
# alright so it has to work a bit differently.
# 1. get solutions starting at uniformly spaced points on dVk
# 2. remesh them to be equidistant at dVk+1
# 3. get solutions again.
# 1. uniform solutions.
sols_uniform = solve_fast(yfs, v_upper)
# 2. remeshing
yfs = remesh(sols_uniform, 0.0)
# 3. remeshed solutions.
sols = solve_fast(yfs, v_upper)
# pl.plot(*sols_uniform.ys['x'].reshape(-1,2).T, alpha=.3, label='uniform')
# pl.plot(*jax.vmap(transform_plot)(sols.ys['x']).reshape(-1,2).T, alpha=.3, label='remeshed')
# pl.legend()
viridis = matplotlib.colormaps['viridis']
c = viridis(v_upper / levels[-1])
if threed:
pl.plot(*sols.ys['x'][::10,:,:].reshape(-1, 3).T, c=c, alpha=.1, label='remeshed')
else:
pl.plot(*jax.vmap(transform_plot)(sols.ys['x'][::10,:,:].reshape(-1, 3)).T, c=c, alpha=.1, label='remeshed')
# yprev = yfs
yfs = jax.vmap(lambda sol: sol.evaluate(sol.t1))(sols)
viridis = matplotlib.colormaps['viridis']
if threed:
pl.plot(*yfs['x'].T, '-', alpha=.5, color = c )
else:
pl.plot(*jax.vmap(transform_plot)(yfs['x']).T, '-', alpha=.5, color = c )
# pl.plot(*sols.ys['x'].reshape(-1, 2).T, color='black', alpha=.1 )
pl.show()
ipdb.set_trace()
def find_collision_continuation(sols, v_upper):
# approach it the opposite way, with trajectories.
# assume all "collisions" happen in the value slice covered by sols.
pl.plot(*sols.ys['x'][0])
pass
def find_self_intersection(xs):
# given a closed curve in 2d space, return all points where it intersects itself.
# absolutely brute force. no apologies.
# first, we want all pairs of neighboring points.
first_idx = np.arange(xs.shape[0])
second_idx = np.roll(first_idx, -1)
# we want to know if the line segment between
lfirst = xs[first_idx]
lsecond = xs[second_idx]
rfirst = xs[first_idx]
rsecond = xs[second_idx]
# for each index pari (i, j), we want to know if the line segment
# between lfirst and lsecond intersects the one between rfirst and rsecond.
# that is, concretely:
# 1. find a, b such that: lfirst + a * (lsecond - lfirst) = rfirst + b * (rsecond - rfirst)
# 2. check if a and b are between 0 and 1 - if so, we have an intersection.
# first step, for single line pair.
# lfirst + a * (lsecond - lfirst) = rfirst + b * (rsecond - rfirst)
# a * (lsecond - lfirst) - b * (rsecond - rfirst)= -lfirst + rfirst
# [lsecond-lfirst, rsecond-rfirst] [a; b] = -lfirst + rfirst
# [ldir, rdir] [a; b] = -lfirst + rfirst
def single_intersection(lfirst, lsecond, rfirst, rsecond):
A = np.array([lsecond - lfirst, rsecond - rfirst]).T
b = -lfirst + rfirst
ab = np.linalg.solve(A, b)
return ab
# so for each index (i, j), we need:
# i, j = 1, 2
# single_intersection(lfirst[i], lsecond[i], rfirst[j], rsecond[j])
# now use vmap to do this for all pairs.
all_abs = jax.vmap(jax.vmap(single_intersection, in_axes=(None, None, 0, 0)), in_axes=(0, 0, None, None))(lfirst, lsecond, rfirst, rsecond)
is_inside = ((all_abs > 0.) & (all_abs < 1.)).all(axis=2)
all_intersection_pts = lfirst + all_abs[0][:, None] * (lsecond - lfirst)
ipdb.set_trace()
xs = yfs['x']
find_self_intersection(xs)
print('')
# pl.figure()
# make basically the same plot, but with the data transposed, so we plot value level sets
# instead of trajectories.
# ax = pl.figure().add_subplot(projection='3d')
# for each value level set:
for vlevel in tqdm.tqdm(range(all_vs.shape[1])):
try:
vvec = all_vs[:, vlevel]
x0vec = all_ys[:, vlevel, 0]
x1vec = all_ys[:, vlevel, 1]
# pl.plot(x0vec, x1vec, color=cmap(vvec[0]/v1), alpha=v_alpha)
ax2d.plot(x0vec, x1vec, color=cmap(vvec[0]/v1), alpha=v_alpha)
ax.plot(x0vec, x1vec, vvec, color=cmap(vvec[0]/v1), alpha=v_alpha)
except:
# sometimes the last entries are NaN. Don't care
pass
# ipdb.set_trace()
# pl.savefig(f'animation_figs/orbits_{vlevel:05d}.png', dpi=400)
thetas = np.linspace(0, 2*np.pi, 501)
ax2d.plot(np.sin(thetas), np.cos(thetas), color='black')
ax.plot(np.sin(thetas), np.cos(thetas), 0 * thetas, color='black')
ax2d.scatter([0], [1], [0], color='black')
def intersection(x1,x2,x3,x4,y1,y2,y3,y4):
d = (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4)
if d:
xs = ((x1*y2-y1*x2)*(x3-x4) - (x1-x2)*(x3*y4-y3*x4)) / d
ys = ((x1*y2-y1*x2)*(y3-y4) - (y1-y2)*(x3*y4-y3*x4)) / d
if (xs >= min(x1,x2) and xs <= max(x1,x2) and
xs >= min(x3,x4) and xs <= max(x3,x4)):
return xs, ys
# this is, expectedly, slow as shit.
# make jitted version somehow or ignore completely?
find_intersections = False
if find_intersections:
# find the points where each value curve self-intersects, to plot
# the decision boundary between going left or right.
# first only for maximum vlevel.
vlevel = 101
ntrajs = all_ys.shape[0]
# iterate over all pairs of lines. very brute force :/
for i, line_a in tqdm.tqdm(enumerate(all_ys)):
# only j > i bc symmetry
for j, line_b in enumerate(all_ys[i+1:]):
xi, yi = all_ys[i, vlevel, 0:2]
xip, yip = all_ys[(i+1) % ntrajs, vlevel, 0:2]
xj, yj = all_ys[j, vlevel, 0:2]
xjp, yjp = all_ys[(j+1) % ntrajs, vlevel, 0:2]
out = intersection(xi, xip, xj, xjp, yi, yip, yj, yjp)
# x[i],x[i+1],x[j],x[j+1],y[i],y[i+1],y[j],y[j+1]
if out is not None:
print(out)
# # bit less dense plot for writeup
# pl.figure()
# for idx, name in zip([10, 20, 30, 40, 50, 80, 90], ['v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_k', 'v_{k+1}']):
# pl.plot(all_ys[:, idx, 0], all_ys[:, idx, 1], label=name, c=pl.colormaps['plasma'](idx/120))
#
#
# for i in [50, 80, 90]:
# # plot short trajectory segments too. shape = (n trajectories, n points per trajectory, nx=2)
# plot_states = all_ys[:, i:i+5, 0:2]
#
# # we would like the trajectories to have equal-ish distance.
# # mask out with nan until distance is large enough
# d_min = 0.1
# prev_pt = plot_states[0, 0, :]
# for j in range(1, plot_states.shape[0]):
# dist = np.linalg.norm(plot_states[j, 0, :] - prev_pt)
#
# if dist < d_min:
# # set this point to nan and go to next.
# plot_states = plot_states.at[j, :, :].set(np.nan)
# else:
# # use this point for plotting and mark as prev_pt
# prev_pt = plot_states[j, 0, :]
#
# # also set each last one to nan to not connect.
# plot_states = plot_states.at[:, -1, :].set(np.nan)
# plot_states = plot_states.reshape(-1, 2)
#
# # pl.plot(plot_states[:, 0], plot_states[:, 1], c='black', alpha=0.7, label='optimal trajectories' if i==50 else None)
# pl.legend()
# pl.gca().set_aspect('equal')
# pl.show()
# ipdb.set_trace()
pl.figure()
pl.subplot(211)
for idx, name in zip([20, 40], ['v_k', 'v_{k+1}']):
pl.plot(all_ys[:, idx, 0], all_ys[:, idx, 1], label=name, c=pl.colormaps['plasma'](idx/120))
traj_range = (20, 40)
# then, similar code as above. here for "uniform" sampling:
plot_states = all_ys[:, :, 0:2]
level = traj_range[0]
# all_ys.shape = (N trajs, N_ts, nx)
d_min = 0.1
prev_pt = plot_states[0, level, :]
for j in range(1, plot_states.shape[0]):
dist = np.linalg.norm(plot_states[j, level, :] - prev_pt)
if dist < d_min:
# set this point to nan and go to next.
plot_states = plot_states.at[j, :, :].set(np.nan)
else:
# use this point for plotting and mark as prev_pt
prev_pt = plot_states[j, level, :]
pl.plot(plot_states[:, traj_range[0]:traj_range[1]+1, 0].flatten(), plot_states[:, traj_range[0]:traj_range[1]+1, 1].flatten(), label='uniformly sampled trajectories')
pl.legend()
print('trajectories plotted (uniform)')
print(np.sum(~np.isnan(plot_states[:, 0, 0])))
# and for better sampling.
pl.subplot(212)
for idx, name in zip([20, 40], ['v_k', 'v_{k+1}']):
pl.plot(all_ys[:, idx, 0], all_ys[:, idx, 1], label=name, c=pl.colormaps['plasma'](idx/120))
traj_range = (20, 40)
plot_states = all_ys[:, :, 0:2]
level = traj_range[1]
# all_ys.shape = (N trajs, N_ts, nx)
d_min = 0.2
prev_pt = plot_states[0, level, :]
for j in range(1, plot_states.shape[0]):
dist = np.linalg.norm(plot_states[j, level, :] - prev_pt)
if dist < d_min:
# set this point to nan and go to next.
plot_states = plot_states.at[j, :, :].set(np.nan)
else:
# use this point for plotting and mark as prev_pt
prev_pt = plot_states[j, level, :]
pl.plot(plot_states[:, traj_range[0]:traj_range[1]+1, 0].flatten(), plot_states[:, traj_range[0]:traj_range[1]+1, 1].flatten(), label='extrapolation guided sampling of trajectories')
pl.legend()
print('trajectories plotted (smarter)')
print(np.sum(~np.isnan(plot_states[:, 0, 0])))
pl.show()
ipdb.set_trace()
print('done')